Semin Reprod Med 2006; 24(5): 298-303
DOI: 10.1055/s-2006-954939
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Sources, Derivation, and Culture of Human Embryonic Stem Cells

Michal Amit1 , Joseph Itskovitz-Eldor1
  • 1Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, and the Sohnis and Forman Families Stem Cell Center, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
Further Information

Publication History

Publication Date:
22 November 2006 (online)

Abstract

Human embryonic stem cells (hESCs) are immortal cells capable of perpetual self-renewal in culture while maintaining their undifferentiated state, high telomerase activity, normal karyotype, and specific pattern expression of embryonic surface markers and pluripotent transcription factors such as Oct-4 and Nanog. Since their first derivation in 1998, hundreds of hESC lines have been derived and characterized. Normal surplus embryos from IVF programs are the main source for the derivation of hESC lines but cell lines from poor-quality discarded embryos or embryos carrying genetic defects following preimplantation genetic diagnosis were also isolated. Such isolation is usually accomplished by either mechanical or immunosurgical removal of the trophectoderm and culture of the inner cell mass on inactivated feeder cells. In light of the future need for clinical-grade cells, the subject of defining specific culture conditions has been addressed widely. Indeed, derivation and maintenance of hESCs without feeder cells and in media free of animal products have been attained recently. This well-defined culture system may facilitate research and clinical applications, and use the remarkable potential of these exceptional cells to its fullest in both the laboratory and the clinic.

REFERENCES

  • 1 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos.  Nature. 1981;  292 154-156
  • 2 Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.  Proc Natl Acad Sci USA. 1981;  78 7634-7638
  • 3 Thomson J A, Itskovitz-Eldor J, Shapiro S S et al.. Embryonic stem cell lines derived from human blastocysts.  Science. 1998;  282 1145-1147 , [erratum Science 1998;282:1827]
  • 4 Reubinoff B E, Pera M F, Fong C, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro .  Nat Biotechnol. 2000;  18 399-404
  • 5 Steptoe P C, Edwards R G. Birth after the reimplantation of a human embryo.  Lancet. 1978;  2 366
  • 6 Mitalipova M, Calhoun J, Shin S et al.. Human embryonic stem cell lines derived from discarded embryos.  Stem Cells. 2003;  21 521-526
  • 7 Suss-Toby E, Gerecht-Nir S, Amit M, Manor D, Itskovitz-Eldor J. From the cover: derivation of a diploid human embryonic stem cell line from a mononuclear zygote.  Hum Reprod. 2004;  19 670-675
  • 8 Verlinsky Y, Strelchenko N, Kukharenko V et al.. Human embryonic stem cell lines with genetic disorders.  Reprod Biomed Online. 2005;  10 105-110
  • 9 Mateizel I, De Temmerman N, Ullmann U et al.. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders.  Hum Reprod. 2006;  21 503-511
  • 10 Vrana K E, Hipp J D, Goss A M et al.. Nonhuman primate parthenogenetic stem cells.  Proc Natl Acad Sci USA. 2003;  100 11911-11916 , [erratum Proc Natl Acad Sci USA 2004;101:693]
  • 11 Chung Y, Klimanskaya I, Becker S et al.. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres.  Nature. 2006;  439 216-219
  • 12 Lanzendorf S E, Boyd C A, Wright D L, Muasher S, Oehninger S, Hodgen G D. Use of human gametes obtained from anonymous donors for the production of human embryonic stem cell lines.  Fertil Steril. 2001;  76 132-137
  • 13 Amit M, Itskovitz-Eldor J. Derivation and spontaneous differentiation of human embryonic stem cells.  J Anat. 2002;  200 225-232
  • 14 Solter D, Knowles B B. Immunosurgery of mouse blastocyst.  Proc Natl Acad Sci USA. 1975;  72 5099-5102
  • 15 Williams R, Hilton D, Pease S et al.. Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells.  Nature. 1988;  336 684-687
  • 16 Smith A G, Heath J K, Donaldson D D et al.. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides.  Nature. 1988;  336 688-690
  • 17 Smith A G. Embryonic stem cells. In: Marshak DR, Gardner RL, Gottlieb D Stem Cell Biology. Woodbury, NY; Cold Spring Harbor Laboratory Press 2000: 205-230
  • 18 Daheron L, Opitz S L, Zaehres H et al.. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells.  Stem Cells. 2004;  22 770-778
  • 19 Humphrey R K, Beattie G M, Lopez A D et al.. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent.  Stem Cells. 2004;  22 522-530
  • 20 Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou A H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor.  Nat Med. 2004;  10 55-63
  • 21 Amit M, Carpenter M K, Inokuma M S et al.. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.  Dev Biol. 2000;  227 271-278
  • 22 Amit M, Margulets V, Segev H et al.. Human feeder layers for human embryonic stem cells.  Biol Reprod. 2003;  68 2150-2156
  • 23 Hovatta O, Mikkola M, Gertow K et al.. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells.  Hum Reprod. 2003;  18 1404-1409
  • 24 Xu C, Inokuma M S, Denham J et al.. Feeder-free growth of undifferentiated human embryonic stem cells.  Nat Biotechnol. 2001;  19 971-974
  • 25 Amit M, Shariki K, Margulets V, Itskovitz-Eldor J. Feeder and serum-free culture system for human embryonic stem cells.  Biol Reprod. 2004;  70 837-845
  • 26 Xu R H, Peck R M, Li D S, Feng X, Ludwig T, Thomson J A. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells.  Nat Methods. 2005;  2 185-190
  • 27 Xu C, Rosler E, Jiang J et al.. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium.  Stem Cells. 2005;  23 315-323
  • 28 Richards M, Fong C Y, Chan W K, Wong P C, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells.  Nat Biotechnol. 2002;  20 933-936
  • 29 Cheng L, Hammond H, Ye Z, Zhan X, Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture.  Stem Cells. 2003;  21 131-142
  • 30 Inzunza J, Gertow K, Stromberg M A et al.. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells.  Stem Cells. 2005;  23 544-549
  • 31 Xu C, Jiang J, Sottile V, McWhir J, Lebkowski J, Carpenter M K. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth.  Stem Cells. 2004;  22 972-980
  • 32 Yoo S J, Yoon B S, Kim J M et al.. Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells.  Exp Mol Med. 2005;  37 399-407
  • 33 Vallier L, Alexander M, Pedersen R A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.  J Cell Sci. 2005;  118 4495-4509
  • 34 Ludwig T E, Levenstein M E, Jones J M et al.. Derivation of human embryonic stem cells in defined conditions.  Nat Biotechnol. 2006;  24 185-187
  • 35 Moore H. The medium is the message.  Nat Biotechnol. 2006;  24 160-161

Joseph Itskovitz-EldorM.D. D.Sc. 

Department of Obstetrics and Gynecology, Rambam Medical Center

P.O.B. 9602, Haifa 31096, Israel

Email: Itskovitz@rambam.health.gov.il