References and Notes
For reviews, see:
1a
Wasilke J.
Obrey SJ.
Baker RT.
Bazan GC.
Chem. Rev.
2005,
105:
1001
1b
Ajamian A.
Gleason JL.
Angew. Chem. Int. Ed.
2004,
43:
3754
1c
Lee JM.
Na Y.
Han H.
Chang S.
Chem. Soc. Rev.
2004,
33:
302
2 For a review, see: Müller TJJ.
Top. Organomet. Chem.
2006,
19:
149
3 For a recent monograph, see: Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
For reviews, see:
4a
Bienaymé H.
Hulme C.
Oddon G.
Schmitt P.
Chem. Eur. J.
2000,
6:
3321
4b
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
4c
Ugi I.
Dömling A.
Werner B.
J. Heterocycl. Chem.
2000,
37:
647
4d
Weber L.
Illgen K.
Almstetter M.
Synlett
1999,
366
4e
Armstrong RW.
Combs AP.
Tempest PA.
Brown SD.
Keating TA.
Acc. Chem. Res.
1996,
29:
123
4f
Ugi I.
Dömling A.
Hörl W.
Endeavour
1994,
18:
115
4g
Posner GH.
Chem. Rev.
1986,
86:
831
For reviews on diversity-oriented syntheses, see:
5a
Schreiber SL.
Burke MD.
Angew. Chem. Int. Ed.
2004,
43:
46
5b
Burke MD.
Berger EM.
Schreiber SL.
Science
2003,
302:
613
5c
Arya P.
Chou DTH.
Baek MG.
Angew. Chem. Int. Ed.
2001,
40:
339
5d
Cox B.
Denyer JC.
Binnie A.
Donnelly MC.
Evans B.
Green DVS.
Lewis JA.
Mander TH.
Merritt AT.
Valler MJ.
Watson SP.
Progr. Med. Chem.
2000,
37:
83
5e
Schreiber SL.
Science
2000,
287:
1964
6
Kobayashi S.
Chem. Soc. Rev.
1999,
28:
1
7a
Kressierer CJ.
Müller TJJ.
Org. Lett.
2005,
7:
2237
7b
Karpov AS.
Merkul E.
Oeser T.
Müller TJJ.
Chem. Commun.
2005,
2581
8a
Braun RU.
Ansorge M.
Müller TJJ.
Chem. Eur. J.
2006,
12: 9081
8b
Müller TJJ.
Ansorge M.
Aktah D.
Angew. Chem. Int. Ed.
2000,
39:
1253
For lead reviews on Sonogashira couplings, see for example:
9a
Takahashi S.
Kuroyama Y.
Sonogashira K.
Hagihara N.
Synthesis
1980,
627
9b
Sonogashira K. In
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
p.203
9c
Sonogashira K.
J. Organomet. Chem.
2002,
653:
46
9d
Negishi E.-I.
Anastasia L.
Chem. Rev.
2003,
103:
1979
9e
Marsden JA.
Haley MM. In Metal-Catalyzed Cross-Coupling Reactions
2nd ed.:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
p.317
10
Braun RU.
Müller TJJ.
Mol. Diversity
2003,
6:
251
11
Typical Procedure (6a, Table 1, Entry 11).
To a magnetically stirred solution of 86 mg (0.30 mmol) of 4a, 42 mg (0.31 mmol) of 5a, 8 mg (12 µmol) of Pd(PPh3)Cl2, 2 mg (10 µmol) of CuI, and 16 mg (60 µmol) of PPh3 in 0.9 mL of degassed THF in a microwave vial under nitrogen were added 48 µL (0.32 mmol) of DBU. Then the sealed vessel was heated by microwave irradiation to 120 °C for 30 min. After cooling to r.t., H2O was added and the aqueous layer was extracted with EtOAc. The combined organic phases were dried with MgSO4. The solvents were removed in vacuo and the residue was chromatographed on silica gel to give 64 mg (64%) of the desired product 6a, mp 144-145 °C. 1H NMR (300 MHz, CDCl3): δ = 1.36 (s, 12 H), 7.48-7.62 (m, 6 H), 7.79-7.87 (m, 3 H), 8.01-8.04 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 24.9 (CH3), 84.0 (Cquat.), 122.8 (CH), 127.6 (CH), 128.5 (CH), 128.6 (CH), 132.8 (CH), 135.3 (CH), 137.3 (Cquat.), 138.2 (Cquat.), 144.6 (CH), 190.5 (Cquat.). MS (70 eV, EI): m/z (%) = 334 (100) [M+], 207 (32) [M+ - Bpin]. HRMS: m/z calcd for C21H23BO3: 334.1740; found: 334.1731. Anal. Calcd for C21H23BO3 (334.2): C, 75.47; H, 6.94. Found: C, 75.36; H, 6.96.
12 All compounds have been fully characterized by 1H NMR, 13C NMR and DEPT, COSY, NOESY, HETCOR and HMBC NMR experiments, IR, MS, HRMS and/or combustion analyses.
For recent reviews and monographs on microwave-accelerated syntheses, see for example:
13a
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
13b
Nüchter M.
Ondruschka B.
Bonrath W.
Gum A.
Green Chem.
2004,
6:
128
13c
Nüchter M.
Müller U.
Ondruschka B.
Tied A.
Lautenschläger W.
Chem. Eng. Technol.
2003,
26:
1207
13d
de la Hoz A.
D’Waz-Ortis A.
Moreno A.
Langa F.
Eur. J. Org. Chem.
2000,
3659
13e
Xu Y.
Guo Q.-X.
Heterocycles
2004,
63:
903
13f
Microwaves in Organic Synthesis
Loupy A.
Wiley-VCH;
Weinheim:
2002.
13g
Hayes BL.
Microwave Synthesis: Chemistry at the Speed of Light
CEM Publishing;
Matthews, NC:
2002.
13h
Microwave-Assisted Organic Synthesis
Lidström P.
Tierney JP.
Blackwell;
Oxford:
2004.
13i
Kappe CO.
Stadler A.
Microwaves in Organic and Medicinal Chemistry
Wiley-VCH;
Weinheim:
2005.
14
Schramm OG.
Müller TJJ.
Synlett
2006,
1841
15 Without isolation, the yield for the first step is apparently higher than in the optimization (Table
[1]
, entry 11).
16
Typical Procedure (7a, Table 3, Entry 11).
To a magnetically stirred solution of 86 mg (0.30 mmol) of 4a, 42 mg (0.31 mmol) of 5a, 8 mg (12 µmol) of Pd(PPh3)Cl2, 2 mg (10 µmol) of CuI, and 16 mg (60 µmol) of PPh3 in 0.9 mL of degassed THF in a microwave vial under nitrogen were added 48 µL (0.32 mmol) of DBU. Then the sealed vessel was heated by microwave irradiation to 120 °C for 30 min. After cooling to r.t. 55 mg (0.31 mmol) of 1a, 63 mg (0.45 mmol) of K2CO3, and 0.6 mL of H2O were added to the reaction mixture, and then the sealed vessel was heated by microwave irradiation to 110 °C for 20 min. After cooling to r.t. H2O was added and the aqueous layer was extracted with EtOAc. The combined organic phases were dried with MgSO4. The solvents were removed in vacuo and the residue was chromatographed on silica gel to give 70 mg (76%) of 7a as a yellow solid, mp 120-122 °C. 1H NMR (300 MHz, CDCl3): δ = 7.50-7.67 (m, 6 H), 7.70-7.77 (m, 6 H), 7.85 (d, J = 15.6 Hz, 1 H), 8.05-8.02 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 111.4 (Cquat.), 118.7 (Cquat.), 122.7 (CH), 127.6 (CH), 127.7 (CH), 128.5 (CH), 128.7 (CH), 129.1 (CH), 132.7 (CH), 132.9 (CH), 135.2 (Cquat.), 138.0 (Cquat.), 140.9 (Cquat.), 143.6 (CH), 144.5 (Cquat.), 190.2 (Cquat.). MS (70 eV, EI): m/z (%) = 309 (100) [M+], 207 (50) [M+ - C6H4CN]. Anal. Calcd for C22H15NO (309.4): C, 85.41; H, 4.89; N, 4.53. Found: C, 85.49; H, 4.91; N, 4.58.