Subscribe to RSS
DOI: 10.1055/s-2006-956492
Effective Pathway to the α-CF3-Substituted Azahistidine Analogues
Publication History
Publication Date:
20 December 2006 (online)
Abstract
An efficient method for the preparation of functionalized α-trifluoromethyl-substituted azahistidine analogues has been developed. The method is based on the regioselective addition of allenylmagnesiumbromide to highly electrophilic imines of trifluoropyruvates and subsequent 1,3-dipolar Huisgen cycloaddition between α-propargyl-α-trifluoromethyl-α-amino esters and organic azides.
Key words
fluorinated imines - amino acids - histidine - click reaction - organic azides
-
1a
Giannis A.Kolter T. Angew. Chem., Int. Ed. Engl. 1993, 32: 1244 -
1b
Seebach D.Sting AR.Hoffmann M. Angew. Chem., Int. Ed. Engl. 1996, 35: 2708 -
1c
Cativiela C.Diaz-de-Villegas MD. Tetrahedron: Asymmetry 1998, 9: 3517 -
1d
Link AJ.Mock ML.Tirrell DA. Curr. Opin. Biotechnol. 2003, 14: 603 -
2a
Sewald N.Burger K. In Synthesis of β-Fluoro-Containing Amino AcidsKukhar’ VP.Soloshonok VA. John Wiley and Sons Ltd.; New York: 1995. p.139 -
2b
Yoder NC.Kumar K. Chem. Soc. Rev. 2002, 31: 335 -
2c
Jaeckel C.Salwiczek M.Koksch B. Angew. Chem. Int. Ed. 2006, 45: 4198 -
3a
Gregory DH.Gerig JT. Biopolymers 1991, 31: 845 -
3b
Cushmann M.Patel HH.Scheuring J.Bacher A. J. Org. Chem. 1992, 57: 5630 - 4
Kollonitsch J. In Biomedicinal Aspects of Fluorine ChemistryFiller R.Kobayashi Y. Kondasha, Tokyo and Elsevier Biomedical Press; Amsterdam: 1982. p.93 ; and references cited therein -
5a
Osipov SN.Golubev AS.Sewald N.Burger K. Tetrahedron Lett. 1997, 38: 5965 -
5b
Moroni M.Koksch B.Osipov SN.Crucianelli M.Triderio M.Bravo P.Burger K. J. Org. Chem. 2001, 66: 130 -
5c
Osipov SN.Tsouker P.Hennig L.Burger K. Tetrahedron 2004, 60: 271 - 6
Osipov SN.Golubev AS.Sewald N.Michel T.Kolomiets AF.Fokin AV.Burger K. J. Org. Chem. 1996, 61: 7521 -
7a
Osipov SN.Bruneau C.Picquet M.Kolomiets AF.Dixneuf PH. Chem. Commun. 1998, 2053 -
7b
Semeril D.Le Notre J.Bruneau C.Dixneuf PH.Kolomiets AF.Osipov SN. New J. Chem. 2001, 16 -
7c
Osipov SN.Artyushin OI.Kolomiets AF.Bruneau C.Dixneuf RH. Synlett 2000, 1031 -
7d
Osipov SN.Kobel’kova NM.Shchetnikov GT.Kolomiets AF.Bruneau C.Dixneuf PH. Synlett 2001, 621 -
7e
Osipov SN.Artyushin OI.Kolomiets AF.Bruneau C.Picquet M.Dixneuf PH. Eur. J. Org. Chem. 2001, 3891 -
7f
Osipov SN.Dixneuf P. Russ. J. Org. Chem. 2003, 39: 1211 -
7g
Eckert M.Monnier F.Shchetnikov GT.Titanyuk ID.Osipov SN.Dérien S.Dixneuf PH. Org. Lett. 2005, 7: 3741 -
8a
Faden AI.Labroo VM.Cohen LA. Neurotrauma 1993, 10: 101 -
8b
Vonhof S.Paakkari I.Feuerstein G.Cohen LA.Labroo VM. Eur. J. Pharmacol. 1989, 164: 77 -
8c
Narayanan S.Vangapandu S.Jain R. Bioorg. Med. Chem. Lett. 2001, 11: 1133 - 9
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004 - 10
Bock VD.Hiemstra H.van Maarseveen JH. Eur. J. Org. Chem. 2006, 51 - 11
Alvarez R.Velazquez S.San-Felix A.Aquaro S.De Clercq E.Perno C.-F.Karlsson A.Balzarini J.Carmarasa MJ. J. Med. Chem. 1994, 37: 4185 - 12
Brockunier LL.Parmee ER.Ok HO.Candelore MR.Cascieri MA.Colwell LF.Deng L.Feeney WP.Wyvratt MJ.Fisher MH.Weber AE. Bioorg. Med. Chem. Lett. 2000, 10: 2111 - 13
Genin MJ.Allwine DA.Anderson DJ.Barbachyn MR.Emmert DE.Garmon SA.Graber DR.Grege KC.Hester JB.Hutchinson DK.Morris J.Reischer RJ.Ford CW.Zurenko GE.Hamel JC.Schaadt RD.Stapert D.Yagi BH. J. Med. Chem. 2000, 43: 953 -
14a
Buckle DR.Rockell CJM. J. Chem. Soc., Perkin Trans. 1 1982, 627 -
14b
Buckle DR.Outred DJ.Rockell CJM.Smith H.Spicer BA. J. Med. Chem. 1983, 26: 251 -
14c
Buckle DR.Rockell CJM.Smith H.Spicer BA. J. Med. Chem. 1986, 29: 2262 - 15 For cytokine inhibition, see:
Kim D.-K.Park HJ. Bioorg. Med. Chem. Lett. 2004, 14: 2401 - 17
Brandsma L.Verkrujsse H. Preparative Organometallic Chemistry Vol. 1: Springer; Berlin: 1987. p.63 - See, for example:
-
18a
Kuijpers BHM.Groothuys S.Keereweer AR.Quaedflieg PJLM.Blaauw RH.Van Delft FL.Rutjes FPJT. Org. Lett. 2004, 6: 3123 -
18b
Horne WS.Stout CD.Ghadiri MR. J. Am. Chem. Soc. 2003, 125: 9372 -
18c
Dondoni A.Giovannini PP.Massi A. Org. Lett. 2004, 6: 2929 -
18d
Angelo NG.Arora PS. J. Am. Chem. Soc. 2005, 127: 17134 -
18e
Paul A.Bittermann H.Gmeiner P. Tetrahedron 2006, 62: 8919
References and Notes
General Procedure for the Preparation of 2.
Allenylmagnesiumbromide17 (solution in THF, 10.0 mmol) was added dropwise to a stirred solution of an imine (10.0 mmol) in dry THF (25 mL) at -78 °C. After 1 h at -78 °C the reaction mixture was allowed to warm to r.t. within 2 h. The reaction was quenched with 1 N HCl and extracted with Et2O (2 × 25 mL). The combined organic layer was washed with brine (25 mL), dried over MgSO4 and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (EtOAc-PE).
Data for Compounds 2a,b.
Compound 2a: oil. 1H NMR (300 MHz, CDCl3): δ = 2.09 (s, 1 H, ºCH), 3.10 (d, J
AB = 16.6 Hz, 1 H, CH2), 3.71 (d, J
AB = 16.6 Hz, 1 H, CH2), 3.96 (s, 3 H, OCH3), 5.22 (m, 2 H, OCH2), 6.10 (s, 1 H, NH), 7.43 (m, 5 H, Ph). 19F NMR (282 MHz, CDCl3): δ (TFA) = 3.38 (s, 3 F, CF3). Anal. Calcd for C15H14F3NO4 (%): C, 54.71; H, 4.29; F, 17.33. Found: C, 55.02; H, 4.38; F, 16.99.
Compound 2b: mp 70-71 °C. 1H NMR (300 MHz, CDCl3): δ = 1.46 [s, 9 H, C(CH3)3], 2.06 (s, 1 H, ºCH), 3.10 (d, J = 16.9 Hz, 1 H, CH2), 3.71 (m, 1 H, CH2), 3.90 (s, 3 H, OCH3), 5.70 (s, 1 H, NH). 19F NMR (282 MHz, CDCl3): δ (TFA) = 3.44 (s, 3 F, CF3). Anal. Calcd for C12H16F3NO4: C, 48.81; H, 5.47; N, 4.74. Found: C, 48.74; H, 5.47; N, 4.68.
Typical Procedure for the Preparation of 3.
Method A. A mixture of organic azide (1.0 mmol), amino ester 2 (1.0 mmol), DIPEA (3.0 mmol) and CuI (0.1 mmol) in THF (10 mL) was stirred at r.t. for 6-8 h. The resulted reaction mixture was treated with 1 N HCl (15 mL), and extracted with Et2O (3 × 15 mL). Combined organic layers were dried over MgSO4 and filtered. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography on silica gel (EtOAc-PE).
Method B. Organic azide (2.0 mmol) and amino ester 2 (2.0 mmol) were suspended in 1:1 H2O-t-BuOH (8 mL). To this was added CuSO4·5H2O (5 M solution, 0.1 mmol, 5 mol%) and sodium ascorbate (0.6 mmol). The mixture was stirred at r.t. for 24 h, at which time TLC (silica, PE-EtOAc) indicated complete conversion. The resulted solution was concentrated under reduced pressure (rotary evaporator). The residue was dissolved in 30 mL of brine and then extracted with CH2Cl2 (3 × 30 mL). Combined organic layers were washed with 5% aq NH4OH (2 × 10 mL), dried over MgSO4, filtered and solvent was removed under vacuum to give analytically pure product.
Data for Compounds 3a,g.
Compound 3a: mp 158-159 °C. 1H NMR (300 MHz, CDCl3): δ = 3.80 (d, 1 H, CH2, J
AB = 15.0 Hz), 4.03 (s, 3 H, OCH3), 4.16 (d, 1 H, CH2, J
AB = 15.0 Hz), 6.18 (s, 1 H, NH), 7.53-7.90 (m, 10 H, Ar), 8.22 (s, 1 H, H-triazole). 19F NMR (282 MHz, CDCl3): δ (TFA) = 5.38 (s, 3 F, CF3). Anal. Calcd for C19H17F3N4O4S (%): C, 50.22; H, 3.77; N, 12.33. Found: C, 50.07; H, 3.84; N, 12.28.
Compound 3g: mp 78-79 °C. 1H NMR (300 MHz, CDCl3): δ = 1.84 and 1.88 (2 × s, 3 H, OAc), 2.12 (m, 9 H, 3 × OAc), 3.67 (dd, J = 14.8, 2.5 Hz, 1 H, CH), 3.95 and 3.98 (2 × s, 3 H, OMe), 4.02 (m, 1 H, CH), 4.26 (m, 3 H, CH, CH2), 5.11-5.51 (m, 5 H, 3 × CH, OCH2), 5.78 (t, 2
J
H-H = 8.9 Hz, 1 H), 6.09 (br s, 1 H, NH), 7.45 (m, 6 H, 1 H-triazole, 5 H-Ar). 19F NMR (282 MHz, CDCl3): δ (TFA) = 3.87 (br s, 3 F, CF3). Anal. Calcd for C29H33F3N4O13: C, 49.58; H, 4.73; N, 7.97. Found: C, 49.12; H, 4.57; N, 7.57.
Data for Compound 6.
Mp 216-217 °C. 1H NMR (300 MHz, D2O): δ = 3.38 (d, J
AB = 15.3 Hz, 1 H), 3.64 (d, J
AB = 15.3 Hz, 1 H), 7.73 (s, 1 H, H-triazole). 19F NMR (282 MHz, D2O): δ (TFA) = 3.55 (s, 3 F, CF3). 13C NMR (150.9 MHz, D2O): δ = 26.5, 65.3 (q, 2
J
C-F = 25.4 Hz), 123.5 (q, 1
J
C-F = 228.9 Hz), 128.1, 137.9, 166.0. Anal. Calcd for C6H7F4N4O2: C, 32.15; H, 3.15; N, 25.00. Found: C, 32.12; H, 3.04; N, 24.67.