ABSTRACT
Progesterone actions in human pregnancy are controlled by the extent of myometrial progesterone responsiveness. Current progress in unraveling the biochemistry for myometrial progesterone responsiveness at the genomic and nongenomic levels have lead to novel hypotheses regarding the role of these pathways in the hormonal control of human pregnancy and parturition. For the genomic pathway, progesterone interacts with the type-B nuclear progesterone receptor (nPR-B), which decreases expression of contraction-associated genes. For the nongenomic pathway, progesterone interacts with membrane-associated PRs (mPRs) to modulate directly intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels. During most of human pregnancy the genomic and nongenomic pathway cooperate to maintain myometrial relaxation. However, at parturition the relaxing actions of progesterone are nullified by changes in myometrial progesterone responsiveness. This occurs by (1) increased expression of the nPR variants (e.g., PR-A and/or PR-C) and changes in nPR coregulator levels that together repress the transcriptional activity of PR-B; and (2) increased expression of specific mPRs, especially mPRß, which augments contractility by decreasing intracellular cAMP. Functional progesterone withdrawal may be induced by locally produced prostaglandins that alter myometrial nPR expression. This may be an important physiological link between the control of parturition and the immune/inflammatory process.
KEYWORDS
Progesterone responsiveness - myometrium - human pregnancy - genomic - nongenomic
REFERENCES
1 Corner G W. The hormones in human reproduction. London; Princeton University Press 1946
2
Csapo A.
Progesterone “block”.
Am J Anat.
1956;
98
273-292
3
Boroditsky R S, Reyes F I, Winter J S, Faiman C.
Maternal serum estrogen and progesterone concentrations preceding normal labor.
Obstet Gynecol.
1978;
51
686-691
4
Tulchinsky D, Hobel C J, Yeager E, Marshall J R.
Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy.
Am J Obstet Gynecol.
1972;
112
1095-1100
5
Walsh S W, Stanczyk F Z, Novy M J.
Daily hormonal changes in the maternal, fetal, and amniotic fluid compartments before parturition in a primate species.
J Clin Endocrinol Metab.
1984;
58
629-639
6 Tsai M-J, Clark J H, Schrader W T, O'Malley B W. Mechanisms of action of hormones that act as transcription-regulatory factors . In: Wilson J, Foster D, Kronenberg H, Larsen P Williams Textbook of Endocrinology. Philadelphia; WB Saunders 1998: 55-94
7
Jenuwein T, Allis C D.
Translating the histone code.
Science.
2001;
293
1074-1080
8
Evans R M.
The steroid and thyroid hormone receptor superfamily.
Science.
1988;
240
889-895
9
Evans R M.
The nuclear receptor superfamily: a Rosetta stone for physiology.
Mol Endocrinol.
2005;
19
1429-1438
10
Mangelsdorf D J, Thummel C, Beato M et al..
The nuclear receptor superfamily: the second decade.
Cell.
1995;
83
835-839
11
Kastner P, Krust A, Turcotte B et al..
Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B.
EMBO J.
1990;
9
1603-1614
12
Hirata S, Shoda T, Kato J, Hoshi K.
Isoform/variant mRNAs for sex steroid hormone receptors in humans.
Trends Endocrinol Metab.
2003;
14
124-129
13
Giangrande P H, Kimbrel E A, Edwards D P, McDonnell D P.
The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding.
Mol Cell Biol.
2000;
20
3102-3115
14
Tung L, Mohamed M K, Hoeffler J P, Takimoto G S, Horwitz K B.
Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors.
Mol Endocrinol.
1993;
7
1256-1265
15
Vegeto E, Shahbaz M M, Wen D X et al..
Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function.
Mol Endocrinol.
1993;
7
1244-1255
16
Shyamala G, Yang X, Silberstein G, Barcellos-Hoff M H, Dale E.
Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands.
Proc Natl Acad Sci USA.
1998;
95
696-701
17
Mulac-Jericevic B, Lydon J P, DeMayo F J, Conneely O M.
Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform.
Proc Natl Acad Sci USA.
2003;
100
9744-9749
18
Mulac-Jericevic B, Mullinax R A, DeMayo F J, Lydon J P, Conneely O M.
Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform.
Science.
2000;
289
1751-1754
19
Giangrande P H, McDonnell D P.
The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene.
Recent Prog Horm Res.
1999;
54
291-313
20
Condon J C, Hardy D B, Kovaric K, Mendelson C R.
Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function.
Mol Endocrinol.
2006;
20
764-775
21
Mesiano S, Chan E C, Fitter J T et al..
Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium.
J Clin Endocrinol Metab.
2002;
87
2924-2930
22
Pieber D, Allport V C, Hills F, Johnson M, Bennett P R.
Interaction between progesterone receptor isoforms in myometrial cells in human labour.
Mol Hum Reprod.
2001;
7
875-879
23
Haluska G J, Wells T R, Hirst J J et al..
Progesterone receptor localization and isoforms in myometrium, decidua, and fetal membranes from rhesus macaques: evidence for functional progesterone withdrawal at parturition.
J Soc Gynecol Investig.
2002;
9
125-136
24
Henderson D, Wilson T.
Reduced binding of progesterone receptor to its nuclear response element after human labor onset.
Am J Obstet Gynecol.
2001;
185
579-585
25
Condon J C, Jeyasuria P, Faust J M, Wilson J W, Mendelson C R.
A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition.
Proc Natl Acad Sci USA.
2003;
100
9518-9523
26
Dong X, Shylnova O, Challis J R, Lye S J.
Identification and characterization of the protein-associated splicing factor as a negative co-regulator of the progesterone receptor.
J Biol Chem.
2005;
280
13329-13340
27
Elger W, Hasan S G.
Studies on the mechanism of action of antifertile PG in animal models.
Acta Physiol Hung.
1985;
65
415-432
28
Elger W, Hasan S H, Friedreich E.
“Uterine” and “luteal” effects of prostaglandins (PG) in rats and guinea pigs as potential abortifacient mechanisms.
Acta Endocrinol Suppl (Copenh).
1973;
173
46
29
Sugimoto Y, Yamasaki A, Segi E et al..
Failure of parturition in mice lacking the prostaglandin F receptor.
Science.
1997;
277
681-683
30
Embrey M.
PGE compounds for induction of labor and abortion.
Ann N Y Acad Sci.
1971;
180
518-523
31 Thiery J. Induction of labor with prostaglandins . In: Keirse M, Anderson A, Benebroek-Gravenhorst J Human Parturition. The Hague, the Netherlands; Martinus Nijhoff 1979: 155-164
32
Jain J K, Mishell Jr D R.
A comparison of intravaginal misoprostol with prostaglandin E2 for termination of second-trimester pregnancy.
N Engl J Med.
1994;
331
290-293
33
Robins J, Mann L I.
Midtrimester pregnancy termination by intramuscular injection of a 15-methyl analogue of prostaglandin F2 alpha.
Am J Obstet Gynecol.
1975;
123
625-631
34
Madsen G, Zakar T, Ku C Y et al..
Prostaglandins differentially modulate progesterone receptor-A and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal.
J Clin Endocrinol Metab.
2004;
89
1010-1013
35
Mitchell M D, Romero R J, Edwin S S, Trautman M S.
Prostaglandins and parturition.
Reprod Fertil Dev.
1995;
7
623-632
36
Meizel S, Turner K O.
Progesterone acts at the plasma membrane of human sperm.
Mol Cell Endocrinol.
1991;
77
R1-R5
37
Meizel S, Turner K O, Nuccitelli R.
Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction.
Dev Biol.
1997;
182
67-75
38
Turner K O, Garcia M A, Meizel S.
Progesterone initiation of the human sperm acrosome reaction: the obligatory increase in intracellular calcium is independent of the chloride requirement.
Mol Cell Endocrinol.
1994;
101
221-225
39
Tian J, Kim S, Heilig E, Ruderman J V.
Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation.
Proc Natl Acad Sci USA.
2000;
97
14358-14363
40
McEwen B S.
Non-genomic and genomic effects of steroids on neural activity.
Trends Pharmacol Sci.
1991;
12
141-147
41
Schumacher M.
Rapid membrane effects of steroid hormones: an emerging concept in neuroendocrinology.
Trends Neurosci.
1990;
13
359-362
42
Perusquia M.
Nongenomic action of steroids in myometrial contractility.
Endocrine.
2001;
15
63-72
43
Fomin V P, Cox B E, Word R A.
Effect of progesterone on intracellular Ca2 + homeostasis in human myometrial smooth muscle cells.
Am J Physiol.
1999;
276
C379-C385
44
Perusquia M, Garcia-Yanez E, Ibanez R, Kubli-Garfias C.
Non-genomic mechanism of action of delta-4 and 5-reduced androgens and progestins on the contractility of the isolated rat myometrium.
Life Sci.
1990;
47
1547-1553
45
Kofinas A D, Rose J C, Koritnik D R, Meis P J.
Progesterone and estradiol concentrations in nonpregnant and pregnant human myometrium. Effect of progesterone and estradiol on cyclic adenosine monophosphate-phosphodiesterase activity.
J Reprod Med.
1990;
35
1045-1050
46
Sager G, Orbo A, Jaeger R, Engstrom C.
Non-genomic effects of progestins-inhibition of cell growth and increased intracellular levels of cyclic nucleotides.
J Steroid Biochem Mol Biol.
2003;
84
1-8
47
Grazzini E, Guillon G, Mouillac B, Zingg H H.
Inhibition of oxytocin receptor function by direct binding of progesterone.
Nature.
1998;
392
509-512
48
Karteris E, Zervou S, Pang Y et al..
Progesterone signaling in human myometrium through two novel membrane G protein coupled receptors: potential role in functional progesterone withdrawal at term.
Mol Endocrinol.
2006;
7
1519-1534
49
Fu X, Moberg C, Backstrom T, Ulmsten U, Gylfe E.
Anisomycin and verapamil influence the action of progesterone on regulation of term human myometrial contractile activity.
Clin Endocrinol (Oxf).
1997;
47
349-355
50
Rezapour M, Hongpaisan J, Fu X et al..
Effects of progesterone and oxytocin on intracellular elemental composition of term human myometrium in vitro.
Eur J Obstet Gynecol Reprod Biol.
1996;
68
191-197
51
Haukkamaa M.
High affinity progesterone binding sites of human uterine microsomal membranes.
J Steroid Biochem.
1984;
20
569-573
52
Khan-Dawood F S, Dawood M Y.
Estrogen and progesterone receptor and hormone levels in human myometrium and placenta in term pregnancy.
Am J Obstet Gynecol.
1984;
150
501-505
53
Astle S, Khan R N, Thornton S.
The effects of a progesterone metabolite, 5 beta-dihydroprogesterone, on oxytocin receptor binding in human myometrial membranes.
BJOG.
2003;
110
589-592
54
Saner K J, Welter B H, Zhang F et al..
Cloning and expression of a novel, truncated, progesterone receptor.
Mol Cell Endocrinol.
2003;
200
155-163
55
Shah C, Modi D, Sachdeva G et al..
N-terminal region of progesterone receptor B isoform in human spermatozoa.
Int J Androl.
2005;
28
360-371
56
Zhu Y, Bond J, Thomas P.
Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor.
Proc Natl Acad Sci USA.
2003;
100
2237-2242
57
Zhu Y, Rice C D, Pang Y, Pace M, Thomas P.
Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes.
Proc Natl Acad Sci USA.
2003;
100
2231-2236
58
Gerdes D, Wehling M, Leube B, Falkenstein E.
Cloning and tissue expression of two putative steroid membrane receptors.
Biol Chem.
1998;
379
907-911
59
Mifsud W, Bateman A.
Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain.
Genome Biol.
2002;
3
RESEARCH68.1-68.5
60
Mourot B, Nguyen T, Fostier A, Bobe J.
Two unrelated putative membrane-bound progestin receptors, progesterone membrane receptor component 1 (PGMRC1) and membrane progestin receptor (mPR) beta, are expressed in the rainbow trout oocyte and exhibit similar ovarian expression patterns.
Reprod Biol Endocrinol.
2006;
4
6-20
61
Fernandes M S, Pierron V, Michalovich D et al..
Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues.
J Endocrinol.
2005;
187
89-101
62
Chapman N R, Kennelly M M, Harper K A, Europe-Finner G N, Robson S C.
Examining the spatio-temporal expression of mRNA encoding the membrane-bound progesterone receptor-alpha isoform in human cervix and myometrium during pregnancy and labour.
Mol Hum Reprod.
2006;
12
19-24
63
da Fonseca E B, Bittar R E, Carvalho M H, Zugaib M.
Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: a randomized placebo-controlled double-blind study.
Am J Obstet Gynecol.
2003;
188
419-424
64
Meis P J, Klebanoff M, Thom E et al..
Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate.
N Engl J Med.
2003;
348
2379-2385
65
Chanrachakul B, Pipkin F B, Warren A Y, Arulkumaran S, Khan R N.
Progesterone enhances the tocolytic effect of ritodrine in isolated pregnant human myometrium.
Am J Obstet Gynecol.
2005;
192
458-463
Sam MesianoPh.D.
Department of Reproductive Biology, Case Western Reserve University; Department of Obstetrics/Gynecology, University Hospitals of Cleveland
11100 Euclid Ave, Cleveland, OH 44106-5034
eMail: sam.mesiano@cwru.edu