Abstract
Several aspects of the synthesis of indans through a thallium(III)-mediated ring contraction reaction of 1,2-dihydronaphthalene derivatives bearing suitably positioned primary and secondary hydroxyl groups are disclosed. The relative configuration of 3-(2,3-dihydro-1H -inden-3-yl)-2-methyl-3-oxopropyl 4-bromobenzoate was assigned by X-ray crystal structure analysis, allowing additional insights into the mechanism of the thallium(III)-promoted oxidative rearrangement of homoallylic alcohols. The reaction of primary homoallylic alcohols bearing the electron-withdrawing group bromine gave indans in 52-55% yield using an excess of thallium trinitrate (TTN). Furthermore, the thallium(III)-mediated oxidative rearrangement of the secondary homoallylic alcohols gave, in a diastereoselective fashion, indans bearing up to three stereocenters.
Key words
thallium trinitrate - homoallylic alcohols - indan - ring contraction - oxidative rearrangement
References
For reviews concerning ring contraction reactions, see:
1a
Redmore D.
Gutsche CD. In
Advances in Alicyclic Chemistry
Vol. 3:
Hart H.
Karabastos GJ.
Academic Press;
New York:
1971.
p.1
1b
Silva LF., Jr.
Tetrahedron
2002,
58:
9137
For some recent examples of the use of ring contraction reactions in synthesis, see:
2a
Snyder SA.
Corey EJ.
J. Am. Chem. Soc.
2006,
128:
740
2b
Kulcitki V.
Ungur N.
Gavagnin M.
Carbone M.
Cimino G.
Eur. J. Org. Chem.
2005,
9:
1816
2c
Overman LE.
Velthuisen EJ.
J. Org. Chem.
2006,
71:
1581
2d
Srikrishna A.
Ramasastry SSV.
Tetrahedron Lett.
2006,
47:
335
2e
Fañanás FJ.
Álvarez-Pérez M.
Rodríguez F.
Chem. Eur. J.
2005,
11:
5938
3a
Singh OV.
Muthukrishnan M.
Sundaravedivelu M.
Synth. Commun.
2006,
36:
943
3b
Butkus E.
Zilinskas A.
Stoncius S.
Rozenbergas R.
Urbanová M.
Setnicka V.
Boui P.
Volka K.
Tetrahedron: Asymmetry
2002,
13:
633
3c
McKillop A.
Hunt JD.
Taylor EC.
J. Org. Chem.
1972,
37:
3381
3d
Taylor EC.
Chiang C.-S.
McKillop A.
White JF.
J. Am. Chem. Soc.
1976,
98:
6750
3e
McKillop A.
Hunt JD.
Kienzle F.
Bigham E.
Taylor EC.
J. Am. Chem. Soc.
1973,
95:
3635
3f
Rigby JH.
Pigge FC.
J. Org. Chem.
1995,
60:
7392
3g
Rigby JH.
Pigge FC.
Synlett
1996,
631
4
Ferraz HMC.
Silva LF., Jr.
Tetrahedron
2001,
57:
9939
5
Silva LF., Jr.
Quintiliano SAP.
Ferraz HMC.
Santos LS.
Eberlin MN.
J. Braz. Chem. Soc.
2006,
17:
981 ; available free of charge at http://jbcs.org.br
6a
Robertson JM.
Brit. J. Appl. Phys.
1963,
14:
635
6b
Sayre D.
Struct. Chem.
2002,
13:
81
7
Kishi Y.
Johnson MR.
Tetrahedron Lett.
1979,
45:
4347
8
Houk KN.
Paddon-Row MN.
Rondan NG.
J. Am. Chem. Soc.
1982,
104:
7162
9
Ferraz HMC.
Aguilar AM.
Silva LF., Jr.
Synthesis
2003,
1031
10
Silva LF., Jr.
Sousa RMF.
Ferraz HMC.
Aguilar AM.
J. Braz. Chem. Soc.
2005,
16:
1160 ; available free of charge at http://jbcs.org.br
11
Silva LF., Jr.
Pedroso EC.
Ferraz HMC.
J. Braz. Chem. Soc.
2006,
17:
200 ; available free of charge at http://jbcs.org.br
12
Hargrove WW.
Pope HW.
Pearson DE.
Org. Synth.
1960,
40:
7
13
Ferraz HMC.
Silva LF., Jr.
Synthesis
2002,
1033
14 It is important to note that the products of the reaction (indans 12 and 13 ) are also prone to oxidation by thallium(III).
15
Lapalme R.
Lesko PM.
Stevens RV.
J. Org. Chem.
1975,
24:
3495
16
Ohno M.
Kobayashi S.
Urano Y.
Nakada M.
J. Am. Chem. Soc.
1988,
110:
4826
17
Yamamoto H.
Nonoshita K.
Sakurai M.
Itoh T.
Maruoka K.
J. Am. Chem. Soc.
1988,
110:
3588
18
Sato M.
Jinbo T.
Sato F.
Tetrahedron Lett.
1980,
21:
2175
19
Turiño I.
Cermeño FA.
Alberola A.
An. Quim. Ser. C
1980,
76:
233
20a
Curran DP.
J. Am. Chem. Soc.
1983,
105:
5826
20b
Paterson I.
Goodman JM.
Lister MA.
Schumann RC.
McClure CK.
Norcross RD.
Tetrahedron
1990,
46:
4669
20c
Mitsukura K.
Choraku H.
Da S T.
Itoh T.
Bull. Chem. Soc. Jpn.
1999,
72:
1589
21
Gerlach H.
Kappes D.
Boeckman RK., Jr.
Maw GN.
Org. Synth. Coll. Vol. IX
1998,
151
22 The X-ray data have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 618861.