Subscribe to RSS
DOI: 10.1055/s-2007-1003591
© Georg Thieme Verlag Stuttgart · New York
Das Edelgas Xenon - Ein ideales Anästhetikum?
Xenon - the ideal anaesthetic agent?Publication History
Publication Date:
26 November 2007 (online)
Zusammenfassung
Das Edelgas Xenon besitzt neben seiner anästhetischen und analgetischen Wirkung viele Eigenschaften eines idealen Anästhetikums. Seine Anwendung in der klinischen Praxis ist jedoch durch seine extrem hohen Herstellungskosten limitiert. Neuere Studien haben neben bekannten Vorteilen wie hoher hämodynamischer Stabilität und schnellem Erwachen aus der Anästhesie zusätzlich Hinweise auf organoprotektive Effekte bei gleichzeitigem Fehlen relevanter Nebenwirkungen ergeben. Damit könnte Xenon insbesondere bei Risikopatienten bzw. spezifischen Eingriffen möglicherweise Vorteile gegenüber anderen Anästhetika aufweisen, die seinen Einsatz in der klinischen Praxis sinnvoll erscheinen lassen.
Abstract
The noble gas xenon, besides its anaesthetic and analgesic properties, shows many characteristics of an ideal anaesthetic agent. However, due to high production costs, its application is limited In daily clinical routine. Recent studies suggested not only outstanding haemodynamic stability and rapid emergence from anaesthesia, but also xenon's capacity to mediate protection against ischaemic damage in various organs and tissues. Since xenon is devoid of toxicity and relevant side effects, it could be beneficial at least in a subset of patients at high risk, and xenon therefore may become a reasonable alternative in this patient population.
Schlüsselwörter:
Edelgas - Xenon - Anästhesie - Organprotektion - Risikopatienten
Key words:
noble gas - xenon - anaesthesia - organ protection - perioperative risk
Kernaussagen
-
Xenon kommt in der Summe seiner Eigenschaften dem idealen Anästhetikum im Vergleich zu anderen Anästhetika bisher am nächsten.
-
Xenon scheint für kardiovaskuläre Risikopatienten besonders geeignet zu sein, weil es die hämodynamische Stabilität fördert und den Sympathikotonus reduziert.
-
Von den neuroprotektiven Eigenschaften des Xenons könnten Patienten mit einem hohen Risiko für neurokognitive Defizite profitieren.
-
Hohe Kosten limitieren den Einsatz von Xenon auf spezielle Indikationen und Risikopatienten.
-
Geeignete Anästhesiegeräte und Recycling-Verfahren sind Voraussetzung für den in Zukunft breiteren Einsatz von Xenon in der klinischen Praxis.
-
Klinisch relevante Vorteile des Xenons gegenüber anderen Anästhetika müssen durch große, multizentrische Studien weiter evaluiert werden.
-
Ergänzendes Material
- Literaturverzeichnis
Literatur
- 1 Cullen SC, Gross EG.. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science. 1951; 113 580-2
- 2 Nakata Y, Goto T, Morita S.. Comparison of inhalation inductions with xenon and sevoflurane. Acta Anaesthesiol Scand. 1997; 41 1157-61
- 3 Gruss M. et al. . Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol. 2004; 65 443-52
- 4 Solt K, Forman SA.. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr Opin Anaesthesiol. 2007; 20 300-6
- 5 Goto T. et al. . Minimum alveolar concentration-awake of Xenon alone and in combination with isoflurane or sevoflurane. Anesthesiology. 2000; 93 1188-93
- 6 Nakata Y. et al. . Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology. 2001; 94 611-4
- 7 Goto T, Nakata Y, Morita S.. The minimum alveolar concentration of xenon in the elderly is sex-dependent. Anesthesiology. 2002; 97 1129-32
- 8 Hecker KE. et al. . Minimum alveolar concentration (MAC) of xenon in intubated swine. Br J Anaesth. 2004; 92 421-4
- 9 Bedi A. et al. . Use of xenon as a sedative for patients receiving critical care. Crit Care Med. 2003; 31 2470-7
- 10 Rossaint R. et al. . Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology. 2003; 98 6-13
- 11 Goto T. et al. . Xenon provides faster emergence from anesthesia than does nitrous oxide-sevoflurane or nitrous oxide-isoflurane. Anesthesiology. 1997; 86 1273-8
- 12 Coburn M. et al. . Randomized controlled trial of the haemodynamic and recovery effects of xenon or propofol anaesthesia. Br J Anaesth. 2005; 94 198-202
- 13 Goto T. et al. . Emergence times from xenon anaesthesia are independent of the duration of anaesthesia. Br J Anaesth. 1997; 79 595-9
- 14 Bein B. et al. . Comparison of xenon-based anaesthesia compared with total intravenous anaesthesia in high risk surgical patients. Anaesthesia. 2005; 60 960-7
- 15 Luttropp HH. et al. . Left ventricular performance and cerebral haemodynamics during xenon anaesthesia. A transoesophageal echocardiography and transcranial Doppler sonography study. Anaesthesia. 1993; 48 1045-9
- 16 Wappler F. et al. . Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. An-esthesiology. 2007; 106 463-71
- 17 Kunitz O. et al. . Xenon does not prolong neuromuscular block of rocuronium. Anesth Analg. 2004; 99
- 18 Kunitz O. et al. . Xenon does not modify mivacurium induced neuromuscular block. Can J Anaesth. 2005; 52 940-3
- 19 Laitio RM. et al. . Effects of xenon anesthesia on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology. 2007; 106 1128-33
- 20 Rex S. et al. . Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology. 2006; 105 936-43
- 21 Hanss R. et al. . The influence of xenon on regulation of the autonomic nervous system in patients at high risk of perioperative cardiac complications. Br J Anaesth. 2006; 96 427-36
- 22 Ishiguro Y. et al. . Effect of xenon on autonomic cardiovascular control-comparison with isoflurane and nitrous oxide. J Clin Anesth. 2000; 12 196-201
- 23 Schroth SC. et al. . Xenon does not impair the responsiveness of cardiac muscle bundles to positive inotropic and chronotropic stimulation. Anesthesiology. 2002; 96 422-7
- 24 Goto T. et al. . Cardiovascular effects of xenon and nitrous oxide in patients during fentanyl-midazolam anaesthesia. Anaesthesia. 2004; 59 1178-83
- 25 Weber NC. et al. . The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK. Br J Pharmacol. 2005; 144 123-32
- 26 Preckel B. et al. . Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology. 2006; 105 187-97
- 27 Preckel B. et al. . Xenon administration during early reperfusion reduces infarct size after regional ischemia in the rabbit heart in vivo. Anesth Analg. 2000; 91 1327-32
- 28 De Hert SG, Turani F, Mathur S, Stowe DF.. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg. 2005; 100 1584-93
- 29 Lockwood GG. et al. . Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology. 2006; 104 458-65
- 30 Jungwirth B. et al. . Xenon impairs neurocognitive and histologic outcome after cardiopulmonary bypass combined with cerebral air embolism in rats. Anesthesiology. 2006; 104 770-6
- 31 Kudo M. et al. . Effects of volatile anesthetics on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cultures. Anesthesiology. 2001; 95 756-65
- 32 Harada H. et al. . Isoflurane reduces N-methyl-D-aspartate toxicity in vivo in the rat cerebral cortex. Anesth Analg. 1999; 89 1442-7
- 33 Choi DW, Koh JY, Peters S.. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci. 1988; 8 185-96
- 34 Jevtovic-Todorovic V. et al. . Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998; 4 460-3
- 35 Jevtovic-Todorovic V. et al. . A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res. 2001; 895 264-7
- 36 Ma D. et al. . Neuroprotective and neurotoxic properties of the 'inert' gas, xenon. Br J Anaesth. 2002; 89 739-46
- 37 Ma D. et al. . Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol. 2005; 58 182-93
- 38 Wilhelm S. et al. . Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002; 96 1485-91
- 39 Ma D. et al. . Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology. 2003; 98 690-8
- 40 Coburn M. et al. . Emergence and early cognitive function in the elderly after xenon or desflurane anaesthesia: a double-blinded randomized controlled trial. Br J Anaesth. 2007; 98 756-62
- 41 Calzia E. et al. . Respiratory mechanics during xenon anesthesia in pigs: comparison with nitrous oxide. Anesthesiology. 1999; 91 1378-86
- 42 Lachmann B. et al. . Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet. 1990; 335 1413-5
- 43 Zhang P. et al. . Pulmonary resistance in dogs: a comparison of xenon with nitrous oxide. Can J Anaesth. 1995; 42 547-53
- 44 de Rossi LW. et al. . Xenon does not affect human platelet function in vitro. Anesth Analg. 2001; 93 635-40
- 45 Horn NA. et al. . Coagulation assessment in healthy pigs undergoing single xenon anaesthesia and combinations with isoflurane and sevoflurane. Acta Anaesthesiol Scand. 2001; 45 634-8
- 46 Reinelt H. et al. . Hepatic function during xenon anesthesia in pigs. Acta Anaesthesiol Scand. 2002; 46 713-6
- 47 Reinelt H. et al. . Xenon expenditure and nitrogen accumulation in closed-circuit anaesthesia. Anaesthesia. 2001; 56 309-11
- 48 Dingley J. et al. . Exploration of xenon as a potential cardiostable sedative: a comparison with propofol after cardiac surgery. Anaesthesia. 2001; 56 829-35
- 49 Saito H. et al. . Priming of anesthesia circuit with xenon for closed circuit anesthesia. Artif Organs. 1997; 21 70-2
- 50 Hanne P. et al. . Nitrogen accumulation during closed circuit anesthesia depends on the type of surgery. J Clin Anesth. 2005; 17 504-8
PD Dr. med. Berthold Bein
Email: bein@anaesthesie.uni-kiel.de
Dr. med. Jan Höcker
Email: hoecker@anaesthesie.uni-kiel.de
- Literaturverzeichnis