Summary
Muscle cell culture experiments were conducted to determine the relative regulatory effects of insulin-like growth factors (IGF) on protein turnover. The effects of recombinant (rc) human IGF-I, ovine somatomedin (oSm/oIGF-I), and insulin on rates of protein labeling and degradation in L6 myotube cultures were evaluated. Myotube cultures were treated with growth factors following a 4-h serum-free incubation period. Protein labeling was measured by determining the rate of [3H] leucine incorporation into cell protein. Protein degradation was measured by a pulse-chase procedure using [3H] leucine. The apparent half maximal stimulation of protein labeling (12%, 8%, 7%) occurred at approximately .1 nM rcIGF-I, 1 nM oSm/oIGF-I and 15 nM insulin, respectively. The apparent half maximal inhibition of proteolysis (18%, 15% and 11%) occurred at .4 nM rcIGF-I, .6 nM oSm/oIGF-I and 4 nM insulin, respectively. The magnitude of the response for protein labeling and degradation was greatest for rcIGF-I. The results provide additional evidence that IGFs play a primary role in regulating protein turnover in muscle.
Key-Words
Muscle Cells
-
Insulin-Like Growth Factors
-
Protein Turnover