Horm Metab Res 2008; 40(2): 99-107
DOI: 10.1055/s-2007-1022561
Review

© Georg Thieme Verlag KG Stuttgart · New York

Dendritic Cell Subtypes and In Vitro Generation of Dendritic Cells

B. Jacobs 1 , M. Wuttke 1 , C. Papewalis 1 , J. Seissler 2 , M. Schott 1
  • 1Department of Endocrinology, Diabetes and Rheumatology, University Hospital Duesseldorf, Duesseldorf, Germany
  • 2Medical Clinic Innensadt, Ludwig-Maximilians-University Muenchen, Muenchen, Germany
Further Information

Publication History

received 15.10.2007

accepted 26.11.2007

Publication Date:
19 February 2008 (online)

Abstract

Dendritic cells (DCs) are highly potent antigen-presenting cells crucial for the innate and adaptive immune response and for maintaining immune tolerance towards self-antigens. Although they share many common features, multiple DC subtypes with different immune functions have been identified. Originally, DCs were considered to be cells with purely myeloid origin. Recent studies have now demonstrated that DCs can also develop from lymphatic progenitors. Various cytokines and transcription factors are known to be responsible for the development of DC subpopulation. Depending on the subpopulation and the maturation state of these cells, they are either able to induce a broad cytotoxic immune response, and therefore represent a promising tool for anticancer vaccination therapies in humans or induce immune tolerance and are important within the context of autoimmunity. This review will focus on recent advances on the identification of different DC subpopulations including phenotypical and functional differences and on recent developments on protocols for in vitro generation of myeloid-derived DCs.

References

  • 1 Steinman RM. The dendritic cell system and its role in immunogenicity.  Annu Rev Immunol. 1991;  9 271-296
  • 2 Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ. et al . Immunobiology of dendritic cells.  Annu Rev Immunol. 2000;  18 767-811
  • 3 Schott M. Immunesurveillance by dendritic cells: potential implication for immunotherapy of endocrine cancers.  Endocr Relat Cancer. 2006;  13 779-795
  • 4 Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6.  Immunity. 2003;  19 225-234
  • 5 Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M. et al . Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo.  Nat Med. 1999;  5 405-411
  • 6 Kadowaki N, Antonenko S, Ho S, Rissoan MC, Soumelis V, Porcelli SA. et al . Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells.  J Exp Med. 2001;  193 1221-1226
  • 7 Tosi D, Valenti R, Cova A, Sovena G, Huber V, Pilla L. et al . Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+ T cell responses against human tumor antigens.  J Immunol. 2004;  172 5363-5370
  • 8 Munz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity.  J Exp Med. 2005;  202 203-207
  • 9 Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein.  J Exp Med. 2003;  198 267-279
  • 10 Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution.  J Exp Med. 1973;  137 1142-1162
  • 11 Wu L, Liu YJ. Development of dendritic-cell lineages.  Immunity. 2007;  26 741-750
  • 12 Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O. Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells.  J Exp Med. 1998;  187 961-966
  • 13 Naik SH, Corcoran LM, Wu L. Development of murine plasmacytoid dendritic cell subsets.  Immunol Cell Biol. 2005;  83 563-570
  • 14 Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo.  Immunity. 1999;  11 753-761
  • 15 Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection.  Immunity. 2003;  19 59-70
  • 16 Inaba K, Inaba M, Deguchi M, Hagi K, Yasumizu R, Ikehara S. et al . Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow.  Proc Natl Acad Sci USA. 1993;  90 3038-3042
  • 17 Reid CD, Stackpoole A, Meager A, Tikerpae J. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow.  J Immunol. 1992;  149 2681-2688
  • 18 Szabolcs P, Avigan D, Gezelter S, Ciocon DH, Moore MA, Steinman RM. et al . Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-colony-forming unit intermediate.  Blood. 1996;  87 4520-4530
  • 19 Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, Saint-Vis B, Jacquet C. et al . CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha.  J Exp Med. 1996;  184 695-706
  • 20 Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B. et al . Proliferating dendritic cell progenitors in human blood.  J Exp Med. 1994;  180 83-93
  • 21 Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.  J Exp Med. 1994;  179 1109-1118
  • 22 Akagawa KS, Takasuka N, Nozaki Y, Komuro I, Azuma M, Ueda M. et al . Generation of CD1+RelB+ dendritic cells and tartrate-resistant acid phosphatase-positive osteoclast-like multinucleated giant cells from human monocytes.  Blood. 1996;  88 4029-4039
  • 23 Kiertscher SM, Roth MD. Human CD14+ leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF and IL-4.  J Leukoc Biol. 1996;  59 208-218
  • 24 Pickl WF, Majdic O, Kohl P, Stockl J, Riedl E, Scheinecker C. et al . Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes.  J Immunol. 1996;  157 3850-3859
  • 25 Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells.  Proc Natl Acad Sci USA. 1996;  93 ((6)) 2588-2592
  • 26 Chapuis F, Rosenzwajg M, Yagello M, Ekman M, Biberfeld P, Gluckman JC. Differentiation of human dendritic cells from monocytes in vitro.  Eur J Immunol. 1997;  27 431-441
  • 27 Traver D, Akashi K, Manz M, Merad M, Miyamoto T, Engleman EG. et al . Development of CD8alpha-positive dendritic cells from a common myeloid progenitor.  Science. 2000;  290 ((5499)) 2152-2154
  • 28 Wu L, D’Amico A, Hochrein H, O’keeffe M, Shortman K, Lucas K. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors.  Blood. 2001;  98 3376-3382
  • 29 Manz MG, Traver D, Akashi K, Merad M, Miyamoto T, Engleman EG. et al . Dendritic cell development from common myeloid progenitors.  Ann N Y Acad Sci. 2001;  938 167-173
  • 30 D’Amico A, Wu L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3.  J Exp Med. 2003;  198 293-303
  • 31 Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR. et al . A clonogenic bone marrow progenitor specific for macrophages and dendritic cells.  Science. 2006;  311 ((5757)) 83-87
  • 32 Wu L, Vremec D, Ardavin C, Winkel K, Suss G, Georgiou H. et al . Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation.  Eur J Immunol. 1995;  25 418-425
  • 33 Ardavin C, Wu L, Li CL, Shortman K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population.  Nature. 1993;  362 ((6422)) 761-763
  • 34 Wu L, Li CL, Shortman K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny.  J Exp Med. 1996;  184 903-911
  • 35 Martin P, del Hoyo GM, Anjuere F, Ruiz SR, Arias CF, Marin AR. et al . Concept of lymphoid versus myeloid dendritic cell lineages revisited: both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors.  Blood. 2000;  96 2511-2519
  • 36 Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. Dendritic cell potentials of early lymphoid and myeloid progenitors.  Blood. 2001;  97 3333-3341
  • 37 Izon D, Rudd K, DeMuth W, Pear WS, Clendenin C, Lindsley RC. et al . A common pathway for dendritic cell and early B cell development.  J Immunol. 2001;  167 1387-1392
  • 38 Dakic A, Wu L. Hemopoietic precursors and development of dendritic cell populations.  Leuk Lymphoma. 2003;  44 1469-1475
  • 39 Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand.  J Exp Med. 1997;  185 1101-1111
  • 40 Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, Waal MR de. et al . Reciprocal control of T helper cell and dendritic cell differentiation.  Science. 1999;  283 ((5405)) 1183-1186
  • 41 Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2.  J Exp Med. 2000;  192 1775-1784
  • 42 Schotte R, Nagasawa M, Weijer K, Spits H, Blom B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development.  J Exp Med. 2004;  200 1503-1509
  • 43 Chicha L, Jarrossay D, Manz MG. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations.  J Exp Med. 2004;  200 1519-1524
  • 44 Shigematsu H, Reizis B, Iwasaki H, Mizuno S, Hu D, Traver D. et al . Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin.  Immunity. 2004;  21 43-53
  • 45 Hakim FT, Flomerfelt FA, Boyiadzis M, Gress RE. Aging, immunity and cancer.  Curr Opin Immunol. 2004;  16 151-156
  • 46 Steinman RM, Mellman I. Immunotherapy: bewitched, bothered, and bewildered no more.  Science. 2004;  305 ((5681)) 197-200
  • 47 Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages.  Nat Immunol. 2000;  1 510-514
  • 48 Peters JH, Xu H, Ruppert J, Ostermeier D, Friedrichs D, Gieseler RK. Signals required for differentiating dendritic cells from human monocytes in vitro.  Adv Exp Med Biol. 1993;  329 275-280
  • 49 Luft T, Pang KC, Thomas E, Hertzog P, Hart DN, Trapani J. et al . Type I IFNs enhance the terminal differentiation of dendritic cells.  J Immunol. 1998;  161 1947-1953
  • 50 Santini SM, Lapenta C, Logozzi M, Parlato S, Spada M, Di Pucchio T. et al . Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice.  J Exp Med. 2000;  191 1777-1788
  • 51 Banchereau J, Steinman RM. Dendritic cells and the control of immunity.  Nature. 1998;  392 ((6673)) 245-252
  • 52 Siena S, Nicola M Di, Bregni M, Mortarini R, Anichini A, Lombardi L. et al . Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy.  Exp Hematol. 1995;  23 1463-1471
  • 53 Chen CH, Wu TC. Experimental vaccine strategies for cancer immunotherapy.  J Biomed Sci. 1998;  5 231-252
  • 54 Nowrousian MR, Waschke S, Bojko P, Welt A, Schuett P, Ebeling P. et al . Impact of chemotherapy regimen and hematopoietic growth factor on mobilization and collection of peripheral blood stem cells in cancer patients.  Ann Oncol. 2003;  14 ((Suppl 1)) i29-i36
  • 55 Franzke A. The role of G-CSF in adaptive immunity.  Cytokine Growth Factor Rev. 2006;  17 235-244
  • 56 Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily.  J Immunol. 1995;  154 3821-3835
  • 57 Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B. et al . Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability.  J Immunol Meth. 1996;  196 137-151
  • 58 Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood.  J Immunol Meth. 1996;  196 121-135
  • 59 O’Doherty U, Steinman RM, Peng M, Cameron PU, Gezelter S, Kopeloff I. et al . Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium.  J Exp Med. 1993;  178 1067-1076
  • 60 Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E. et al . Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions.  Eur J Immunol. 1997;  27 3135-3142
  • 61 Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H. et al . Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma.  J Exp Med. 1999;  190 1669-1678
  • 62 Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L. et al . A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection.  Int J Cancer. 2001;  93 243-251
  • 63 Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines.  Nat Med. 2004;  10 909-915
  • 64 Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB. et al . Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG.  Ann Oncol. 2006;  17 563-570
  • 65 Scandella E, Men Y, Gillessen S, Forster R, Groettrup M. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells.  Blood. 2002;  100 1354-1361
  • 66 Luft T, Jefford M, Luetjens P, Toy T, Hochrein H, Masterman KA. et al . Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets.  Blood. 2002;  100 1362-1372
  • 67 Morelli AE, Thomson AW. Dendritic cells under the spell of prostaglandins.  Trends Immunol. 2003;  24 108-111
  • 68 Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients.  Blood. 2006;  108 2655-2661
  • 69 Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML. et al . Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity.  Cancer Res. 2004;  64 5934-5937
  • 70 Sporri R, Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function.  Nat Immunol. 2005;  6 163-170
  • 71 Gutterman JU. Cytokine therapeutics: lessons from interferon alpha.  Proc Natl Acad Sci USA. 1994;  91 1198-1205
  • 72 Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R. et al . Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons.  Cancer Res. 1998;  58 2489-2499
  • 73 Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S. et al . The nature of the principal type 1 interferon-producing cells in human blood.  Science. 1999;  284 ((5421)) 1835-1837
  • 74 Sun S, Zhang X, Tough DF, Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA.  J Exp Med. 1998;  188 2335-2342
  • 75 Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive.  J Exp Med. 1999;  189 521-530
  • 76 Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection.  J Exp Med. 2005;  202 637-650
  • 77 Trinchieri G, Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis.  J Exp Med. 1978;  147 1314-1333
  • 78 Mohty M, Vialle-Castellano A, Nunes JA, Isnardon D, Olive D, Gaugler B. IFN-alpha skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities.  J Immunol. 2003;  171 3385-3393
  • 79 Paquette RL, Hsu NC, Kiertscher SM, Park AN, Tran L, Roth MD. et al . Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells.  J Leukoc Biol. 1998;  64 358-367
  • 80 Della BS, Nicola S, Riva A, Biasin M, Clerici M, Villa ML. Functional repertoire of dendritic cells generated in granulocyte macrophage-colony stimulating factor and interferon-alpha.  J Leukoc Biol. 2004;  75 106-116
  • 81 Gabriele L, Borghi P, Rozera C, Sestili P, Andreotti M, Guarini A. et al . IFN-alpha promotes the rapid differentiation of monocytes from patients with chronic myeloid leukemia into activated dendritic cells tuned to undergo full maturation after LPS treatment.  Blood. 2004;  103 980-987
  • 82 Adema GJ, Hartgers F, Verstraten R, Vries E de, Marland G, Menon S. et al . A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells.  Nature. 1997;  387 ((6634)) 713-717
  • 83 Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes.  J Exp Med. 1998;  187 875-883
  • 84 Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M. et al . The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions.  J Clin Invest. 1998;  101 746-754
  • 85 Parlato S, Santini SM, Lapenta C, Di Pucchio T, Logozzi M, Spada M. et al . Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities.  Blood. 2001;  98 3022-3029
  • 86 Breckpot K, Corthals J, Bonehill A, Michiels A, Tuyaerts S, Aerts C. et al . Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response.  J Leukoc Biol. 2005;  78 898-908
  • 87 Papewalis C, Jacobs B, Wuttke B, Ullrich E, Fenk R, Willenberg H. et al . IFN-alpha Skews Monocyte into CD56+ expressing Dendritic Cells with Potent Functional Activities in vitro and in vivo.  J Immunol. 2008;  , in press
  • 88 Banchereau J, Ueno H, Dhodapkar M, Connolly J, Finholt JP, Klechevsky E. et al . Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon.  J Immunother (1997). 2005;  28 505-516
  • 89 Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P. et al . Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells.  J Exp Med. 2002;  195 1279-1288
  • 90 Chomarat P, Dantin C, Bennett L, Banchereau J, Palucka AK. TNF skews monocyte differentiation from macrophages to dendritic cells.  J Immunol. 2003;  171 2262-2269
  • 91 Luft T, Pang KC, Thomas E, Bradley CJ, Savoia H, Trapani J. et al . A serum-free culture model for studying the differentiation of human dendritic cells from adult CD34+ progenitor cells.  Exp Hematol. 1998;  26 489-500
  • 92 Iwamoto S, Iwai S, Tsujiyama K, Kurahashi C, Takeshita K, Naoe M. et al . TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses.  J Immunol. 2007;  179 1449-1457
  • 93 Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells.  Nat Immunol. 2000;  1 311-316
  • 94 Mohamadzadeh M, Berard F, Essert G, Chalouni C, Pulendran B, Davoust J. et al . Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells.  J Exp Med. 2001;  194 1013-1020
  • 95 Dubsky P, Saito H, Leogier M, Dantin C, Connolly JE, Banchereau J. et al . IL-15-induced human DC efficiently prime melanoma-specific naive CD8+ T cells to differentiate into CTL.  Eur J Immunol. 2007;  37 1678-1690
  • 96 Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B. et al . Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP.  Nat Immunol. 2002;  3 673-680
  • 97 Reche PA, Soumelis V, Gorman DM, Clifford T, Liu M, Travis M. et al . Human thymic stromal lymphopoietin preferentially stimulates myeloid cells.  J Immunol. 2001;  167 336-343
  • 98 O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets.  Immunity. 1998;  8 275-283
  • 99 Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties.  Annu Rev Immunol. 1989;  7 145-173
  • 100 Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N. et al . TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand.  J Exp Med. 2005;  202 1213-1223
  • 101 Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE. et al . TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells.  Nat Med. 2005;  11 653-660
  • 102 Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A. et al . Activation and regulation of Toll-like receptors 2 and 1 in human leprosy.  Nat Med. 2003;  9 525-532
  • 103 Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in drosophila adults.  Cell. 1996;  86 973-983
  • 104 Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors.  Science. 2004;  304 ((5673)) 1014-1018
  • 105 Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.  Nature. 1997;  388 ((6640)) 394-397
  • 106 Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer.  Nat Rev Immunol. 2005;  5 296-306

Correspondence

M. SchottMD 

Department of Endocrinology

Diabetology and Rheumatology

University Hospital Duesseldorf

Moorenstr. 5

40225 Duesseldorf

Germany

Phone: +49/211/811 78 10

Fax: +49/211/811 78 60

Email: matthias.schott@uni-duesseldorf.de