Zusammenfassung
Ziel: Quantifizierung und Bestimmung der Verteilung des Ganzkörperfettes mittels einer schnellen 2D-spoiled-Gradientenechosequenz (FLASH) unter Verwendung einer rollenden Tischplattform. Material und Methoden: 11 Testpersonen und 50 Probanden wurden untersucht. Zur Darstellung des Ganzkörperfettes wurde eine schnelle T1-gewichtete 2D-FLASH-Sequenz (TR 101, TE 4.7, FA 70, FOV 50 × 50 cm, 205 × 256 Matrix, SL 10 mm, Schichtabstand 10 mm, TA 0:20 s) verwendet. Die Untersuchung erfolgte auf einer rollenden Tischplattform, welche eine Datenakquisition unterschiedlicher Körperregionen jeweils im Isozentrum des Magneten ermöglicht. 8 - 10 Datensätze wurden aufgenommen und umfassten den Körper von den Armen bis zu den Beinen. Zur Quantifizierung des Körperfettes wurde eine semi-automatische Bildsegmentationssoftware eingesetzt. Die Ergebnisse wurden mit verschiedenen einfachen anthropometrischen und metabolischen Parametern korreliert. Ergebnisse: Alle Datensätze konnten zur Auswertung herangezogen werden. Die Ganzkörperfettmessungen an Testpersonen zeigten eine gute Korrelation zwischen den Ergebnissen der MRT und den Referenzmethoden DEXA (r2 = 0,95) sowie Bioimpedanzmessung (r2 = 0,89), während eine nur mäßige Übereinstimmung (r2 = 0,66) mit dem Bodymass-Index (BMI) bestand. Für die erhobenen anthropometrischen und metabolischen Parameter bei den Probanden konnte keine bis nur mäßige Korrelation zwischen Körpergröße, Körpergewicht, BMI, den Blutfetten und den Fettkompartimenten nachgewiesen werden (r2 = 0,001 bis 0,48). Die Korrelation der in der MRT quantifizierten Fettkompartimente untereinander zeigte keinen relevanten Zusammenhang zwischen der intraabdominal gemessenen Fettmenge und dem Gesamtfett (r2 = 0,14) oder dem subkutanem Fettanteil (r2 = 0,04). Während kein signifikanter Unterschied zwischen Männern und Frauen bezüglich des BMI gefunden wurde (p = 0,26), wiesen Frauen in der MRT eine signifikant höhere Gesamtfettmasse auf (p < 0,05). Bei der Differenzierung des Gesamtkörperfettes in subkutanes und intraabdominales Fett zeigten sich bei den Frauen im Vergleich zu den Männern signifikant höhere Werte für das subkutane Fett (p < 0,05). Schlussfolgerung: Die Magnetresonanztomografie erlaubt eine schnelle, nichtinvasive Ganzkörperuntersuchung mit Bestimmung des Verhältnisses von subkutanem und viszeralem Speicherfett. Das eingesetzte Protokoll und Analyseprogramm lassen eine Quantifizierung innerhalb von wenigen Minuten zu. Die hier beschriebene Technik kann helfen, den Einfluss genetischer und umweltbedingter Einflussfaktoren auf die unterschiedlichen Körperfett-Kompartimente zu bestimmen.
Abstract
Purpose: To evaluate a rapid and comprehensive MR protocol based on a T1-weighted sequence in conjunction with a rolling table platform for the quantification of total body fat. Materials and Methods: 11 healthy volunteers and 50 patients were included in the study. MR data was acquired on a 1.5-T system (Siemens Magnetom Sonata). An axial T1-weighted flash 2D sequence (TR 101, TE 4.7, FA 70, FOV 50 cm, 205 × 256 matrix, slice thickness: 10 mm, 10 mm interslice gap) was used for data acquisition. Patients were placed in a supine position on a rolling table platform capable of acquiring multiple consecutive data sets by pulling the patient through the isocenter of the magnet. Data sets extending from the upper to lower extremities were collected. The images were analyzed with respect to the amount of intraabdominal, subcutaneous and total abdominal fat by semi-automated image segmentation software that employs a contour-following algorithm. Results: The obtained MR images were able to be evaluated for all volunteers and patients. Excellent correlation was found between whole body MRI results in volunteers with DEXA (r2 = 0.95) and bioimpedance (r2 = 0.89) measurements, while the correlation coefficient was 0.66 between MRI and BMI, indicating only moderate reliability of the BMI method. Variations in patients with respect to the amount of total, subcutaneous, and intraabdominal adipose tissue was not related to standard anthropometric measurements and metabolic lipid profiles (r2 = 0,001 to 0.48). The results showed that there was a significant variation in intraabdominal adipose tissue which could not be predicted from the total body fat (r2 = 0.14) or subcutaneous adipose tissue (r2 = 0.04). Although no significant differences in BMI could be found between females and males (p = 0.26), females showed significantly higher total and subcutaneous abdominal adipose tissue (p < 0.05). Conclusion: This MR protocol can be used for the rapid and non-invasive quantification of body fat. The missing relationship between serum lipids and body fat masses suggests that the latter is an additional and independent hazard factor. Variations in body fat distribution, e. g. relationship between subcutaneous and intraabdominal fat, can be comprehensively assessed.
Key words
cost-effectiveness - soft tissues - bone densitometry - technical aspects - health policy and practice - MR imaging
Literatur
1
Mokdad A H, Bowman B A, Ford E S. et al .
The continuing epidemics of obesity and diabetes in the United States.
Jama.
2001;
286
1195-1200
2
Baumgartner R N.
Body composition in healthy aging.
Ann N Y Acad Sci.
2000;
904
437-448
3
Bjorntorp P.
„Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes.
Arteriosclerosis.
1990;
10
493-496
4
Gautier J F, Mourier A, Kerviler de E. et al .
Evaluation of abdominal fat distribution in noninsulin-dependent diabetes mellitus: relationship to insulin resistance.
J Clin Endocrinol Metab.
1998;
83
1306-1311
5
Lemieux S, Despres J P, Moorjani S. et al .
Are gender differences in cardiovascular disease risk factors explained by the level of visceral adipose tissue?.
Diabetologia.
1994;
37
757-764
6
Chan D C, Watts G F, Barrett P H. et al .
Waist circumference, waist-to-hip ratio and body mass index as predictors of adipose tissue compartments in men.
Qjm.
2003;
96
441-447
7
Durnin J V, Womersley J.
Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years.
Br J Nutr.
1974;
32
77-97
8
Lockner D W, Heyward V H, Baumgartner R N. et al .
Comparison of air-displacement plethysmography, hydrodensitometry, and dual X-ray absorptiometry for assessing body composition of children 10 to 18 years of age.
Ann N Y Acad Sci.
2000;
904
72-78
9
Schoeller D A.
Bioelectrical impedance analysis. What does it measure?.
Ann N Y Acad Sci.
2000;
904
159-162
10
Nord R H, Homuth J R, Hanson J A. et al .
Evaluation of a new DXA fan-beam instrument for measuring body composition.
Ann N Y Acad Sci.
2000;
904
118-125
11
Lane J T, Mack-Shipman L R, Anderson J C. et al .
Comparison of CT and dual-energy DEXA using a modified trunk compartment in the measurement of abdominal fat.
Endocrine.
2005;
27
295-299
12
Despres J P, Nadeau A, Tremblay A. et al .
Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women.
Diabetes.
1989;
38
304-309
13
Goodpaster B H, Krishnaswami S, Harris T B. et al .
Obesity, regional body fat distribution, and the metabolic syndrome in older men and women.
Arch Intern Med.
2005;
165
777-783
14
Goodpaster B H, Krishnaswami S, Resnick H. et al .
Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women.
Diabetes Care.
2003;
26
372-379
15
Wajchenberg B L.
Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome.
Endocr Rev.
2000;
21
697-738
16
Garfinkel L.
Overweight and cancer.
Ann Intern Med.
1985;
103
1034-1036
17
Machann J, Thamer C, Schnoedt B. et al .
Standardized assessment of whole body adipose tissue topography by MRI.
J Magn Reson Imaging.
2005;
21
455-462
18
Seidell J C, Bakker C J, Kooy van der K.
Imaging techniques for measuring adipose-tissue distribution - a comparison between computed tomography and 1.5-T magnetic resonance.
Am J Clin Nutr.
1990;
51
953-957
19
Kooy van der K, Leenen R, Seidell J C. et al .
Waist-hip ratio is a poor predictor of changes in visceral fat.
Am J Clin Nutr.
1993;
57
327-333
20
Abate N, Burns D, Peshock R M. et al .
Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers.
J Lipid Res.
1994;
35
1490-1496
21
Kvist H, Sjostrom L, Tylen U.
Adipose tissue volume determinations in women by computed tomography: technical considerations.
Int J Obes.
1986;
10
53-67
22
Thomas E L, Saeed N, Hajnal J V. et al .
Magnetic resonance imaging of total body fat.
J Appl Physiol.
1998;
85
1778-1785
23
Ladd S C, Zenge M, Antoch G. et al .
MR-Ganzkörperdiagnostik.
Fortschr Röntgenstr.
2006;
178
763-770
24
Thomas L W.
The chemical composition of adipose tissue of man and mice.
Q J Exp Physiol Cogn Med Sci.
1962;
47
179-188
25
Kissebah A H, Vydelingum N, Murray R. et al .
Relation of body fat distribution to metabolic complications of obesity.
J Clin Endocrinol Metab.
1982;
54
254-260
26
McNeill G, Fowler P A, Maughan R J. et al .
Body fat in lean and overweight women estimated by six methods.
Br J Nutr.
1991;
65
95-103
27
Tothill P, Han T S, Avenell A. et al .
Comparisons between fat measurements by dual-energy X-ray absorptiometry, underwater weighing and magnetic resonance imaging in healthy women.
Eur J Clin Nutr.
1996;
50
747-752
28
Ross R, Shaw K D, Martel Y. et al .
Adipose tissue distribution measured by magnetic resonance imaging in obese women.
Am J Clin Nutr.
1993;
57
470-475
29
Fowler P A, Fuller M F, Glasbey C A. et al .
Total and subcutaneous adipose tissue in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging.
Am J Clin Nutr.
1991;
54
18-25
30
Wittsack H J, Kapitza C, Cohnen M. et al .
Interaktive Schwellenwert-basierte Volumetrie des abdominalen Fettgehaltes mittels atemgehaltener T1-gewichteter Magnetresonanztomographie.
Fortschr Röntgenstr.
2006;
178
810-815
31
Quick H H, Vogt F M, Maderwald S. et al .
High spatial resolution whole-body MR angiography featuring parallel imaging: initial experience.
Fortschr Röntgenstr.
2004;
176
163-169
32
Lauenstein T C, Goehde S C, Herborn C U. et al .
Whole-body MR imaging: evaluation of patients for metastases.
Radiology.
2004;
233
139-148
33
Goodpaster B H.
Measuring body fat distribution and content in humans.
Curr Opin Clin Nutr Metab Care.
2002;
5
481-487
34
Assmann G, Schulte H.
Role of triglycerides in coronary artery disease: lessons from the Prospective Cardiovascular Munster Study.
Am J Cardiol.
1992;
70
10H-13H
35
Gordon T, Castelli W P, Hjortland M C. et al .
High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.
Am J Med.
1977;
62
707-714
36
Glueck C J, Taylor H L, Jacobs D. et al .
Plasma high-density lipoprotein cholesterol: association with measurements of body mass. The Lipid Research Clinics Program Prevalence Study.
Circulation.
1980;
62
IV-62 - 69
37
Leenen R, Kooy van der K, Droop A. et al .
Visceral fat loss measured by magnetic resonance imaging in relation to changes in serum lipid levels of obese men and women.
Arterioscler Thromb.
1993;
13
487-494
38
Fujioka S, Matsuzawa Y, Tokunaga K. et al .
Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity.
Int J Obes.
1991;
15
853-859
39
Kullberg J, Angelhed J E, Lonn L. et al .
Whole-body T1 mapping improves the definition of adipose tissue: consequences for automated image analysis.
J Magn Reson Imaging.
2006;
24
394-401
40
Poll L W, Wittsack H J, Koch J A. et al .
Quantification of total abdominal fat volumes using magnetic resonance imaging.
Eur J Med Res.
2002;
7
347-352
Dr. Florian M. Vogt
Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Uniklinikum Essen
Hufelandstraße 55
45122 Essen
Phone: ++49/2 01/7 23 15 27
Fax: ++49/2 01/7 23 15 48
Email: florian.vogt@uni-essen.de