RSS-Feed abonnieren
DOI: 10.1055/s-2007-962930
© Georg Thieme Verlag KG Stuttgart · New York
Magnetresonanztomografie-gestützte endovaskuläre Interventionen
Magnetic Resonance Imaging-Guided Endovascular InterventionsPublikationsverlauf
eingereicht: 31.7.2006
angenommen: 29.12.2006
Publikationsdatum:
07. März 2008 (online)

Zusammenfassung
Interventionen unter MRT-Kontrolle waren in der Vergangenheit aufgrund langer Messzeiten und des eingeschränkten Patientenzugangs nur mit großen Schwierigkeiten durchzuführen. Die Weiterentwicklung der MR-Geräte, die Verbesserungen der MR-Messsequenzen, die schnelle Bildgebung ermöglichen, und die zunehmende Verfügbarkeit von im MRT einsetzbaren Instrumenten haben viele dieser Hindernisse beseitigt. Parallel zur Entwicklung der MRT werden perkutane und endovaskuläre Interventionen unter Bildkontrolle immer komplexer und stellen immer höhere Ansprüche an die Bildgebung, mit denen solche Eingriffe gesteuert und kontrolliert werden. Diese zunächst parallel laufenden Trends zeigen in den letzten Jahren eine gewisse Konvergenz. Das Interesse an der MRT-Kontrolle von perkutanen und endovaskulären Interventionen nimmt zu, nicht zuletzt auch aufgrund der Eigenschaften der MRT, sowohl die Morphologie mit exzellentem Weichteilkontrast als auch funktionelle Informationen darzustellen. Das Ziel dieser Übersicht ist es, die technischen Voraussetzungen MRT-gesteuerter endovaskulärer Interventionen darzustellen, erste experimentelle und klinische Anwendungen zu diskutieren und Sicherheitsaspekte der Technik zu erörtern.
Abstract
Historically, the combination of relatively long imaging times and restricted patient access has made MRI-guided intervention an impractical technique. Recent developments in MR hardware, pulse sequence improvements that have allowed the development of rapid imaging, and the availability of instruments that can be used under MR guidance have helped to overcome many of the disadvantages of MRI. Parallel to the development of MRI, image-guided percutaneous and endovascular interventions are becoming increasingly complex and require progressively more sophisticated imaging techniques to guide and control such interventions. These initially parallel trends have converged in the last couple of years. The ability of MRI to provide both unprecedented morphology and functional information has created a growing interest in both percutaneous and endovascular MRI-guided interventions. The goal of this review is to describe the technical prerequisites for MR-guided endovascular interventions, to discuss experimental and clinical applications, and to explain safety aspects of this technique.
Key words
contrast agents - interventional procedures - interventional MR - technical aspects - safety - MR angiography
Literatur
- 1
Rhee T K, Larson A C, Prasad P V. et al .
Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter
arterial embolization in rabbits.
J Vasc Interv Radiol.
2005;
16
1523-1528
MissingFormLabel
- 2
Thomas M, Schulz T, Schmidt F. et al .
MRT-gesteuerte Stanzbiopsie der Schulter: Möglichkeiten und Erfahrungen an einem vertikal
offenen 0,5-T-System.
Fortschr Röntgenstr.
2005;
177
1276-1283
MissingFormLabel
- 3
Gaffke G, Gebauer B, Gnauck M. et al .
Potenzial der MRT für die Radiofrequenzablation von Lebertumoren.
Fortschr Röntgenstr.
2005;
177
77-83
MissingFormLabel
- 4
Boss A, Clasen S, Kuczyk M. et al .
Radiofrequenzablation des Nierenzellkarzinoms unter MR-Bildgebung: Erste Ergebnisse.
Fortschr Röntgenstr.
2005;
177
1139-1145
MissingFormLabel
- 5
Obenauer S, Grabbe E, Knollmann F.
Stellenwert der MR-gestützten Lokalisation und Biopsie von Brustläsionen.
Fortschr Röntgenstr.
2006;
178
477-483
MissingFormLabel
- 6
Paetzel C, Zorger N, Bachthaler M. et al .
Feasibility of MR-guided angioplasty of femoral artery stenoses using real-time imaging
and intraarterial contrast-enhanced MR angiography.
Fortschr Röntgenstr.
2004;
176
1232-1236
MissingFormLabel
- 7
Dick A, Raman V, Raval A. et al .
Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined
X-ray/MRI suite.
Catheterization and cardiovascular interventions.
2005;
64
265-274
MissingFormLabel
- 8
Vogl T J, Balzer J O, Mack M G. et al .
Hybrid MR interventional imaging system: combined MR and angiography suites with single
interactive table. Feasibility study in vascular liver tumor procedures.
Eur Radiol.
2002;
12
1394-1400
MissingFormLabel
- 9
Fahrig R, Butts K, Rowlands J A. et al .
A truly hybrid interventional MR/X-ray system: feasibility demonstration.
J Magn Reson Imaging.
2001;
13
294-300
MissingFormLabel
- 10
Wacker F K, Elgort D, Hillenbrand C M. et al .
The catheter-driven MRI scanner: a new approach to intravascular catheter tracking
and imaging-parameter adjustment for interventional MRI.
AJR.
2004;
183
391-395
MissingFormLabel
- 11
Bock M, Volz S, Zuhlsdorff S. et al .
MR-guided intravascular procedures: real-time parameter control and automated slice
positioning with active tracking coils.
J Magn Reson Imaging.
2004;
19
580-589
MissingFormLabel
- 12
Bock M, Muller S, Zuehlsdorff S. et al .
Active catheter tracking using parallel MRI and real-time image reconstruction.
Magn Reson Med.
2006;
55
1454-1459
MissingFormLabel
- 13
Guttman M A, Kellman P, Dick A J. et al .
Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD.
Magn Reson Med.
2003;
50
315-321
MissingFormLabel
- 14
Wacker F K, Faiss S, Reither K. et al .
MR imaging-guided biliary drainage in an open low-field system: first clinical experiences.
Fortschr Röntgenstr.
2000;
172
744-747
MissingFormLabel
- 15
Hagspiel K D, Kandarpa K, Silverman S G.
Interactive MR-guided percutaneous nephrostomy.
J Magn Reson Imaging.
1998;
8
1319-1322
MissingFormLabel
- 16
Williams J R.
The interdependence of staff and patient doses in interventional radiology.
Br J Radiol.
1997;
70
498-503
MissingFormLabel
- 17
Martin A J, Saloner D A, Roberts T P. et al .
Carotid stent delivery in an XMR suite: immediate assessment of the physiologic impact
of extracranial revascularization.
Am J Neuroradiol.
2005;
26
531-537
MissingFormLabel
- 18
Deng J, Miller F H, Rhee T K. et al .
Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response
to yttrium-90 radioembolization.
J Vasc Interv Radiol.
2006;
17
1195-1200
MissingFormLabel
- 19
Hillenbrand C M, Elgort D R, Wong E Y. et al .
Active device tracking and high-resolution intravascular MRI using a novel catheter-based,
opposed-solenoid phased array coil.
Magn Reson Med.
2004;
51
668-675
MissingFormLabel
- 20
Omary R A, Gehl J A, Schirf B E. et al .
MR imaging- versus conventional X-ray fluoroscopy-guided renal angioplasty in swine:
prospective randomized comparison.
Radiology.
2006;
238
489-496
MissingFormLabel
- 21
Elgort D R, Hillenbrand C M, Zhang S. et al .
Image-guided and -monitored renal artery stenting using only MRI.
J Magn Reson Imaging.
2006;
23
619-627
MissingFormLabel
- 22
Green J D, Omary R A, Schirf B E. et al .
Comparison of X-ray fluoroscopy and interventional magnetic resonance imaging for
the assessment of coronary artery stenoses in swine.
Magn Reson Med.
2005;
54
1094-1099
MissingFormLabel
- 23
Bakker C J, Hoogeveen R M, Weber J. et al .
Visualization of dedicated catheters using fast scanning techniques with potential
for MR-guided vascular interventions.
Magn Reson Med.
1996;
36
816-820
MissingFormLabel
- 24
Wacker F K, Reither K, Branding G. et al .
Magnetic resonance-guided vascular catheterization: feasibility using a passive tracking
technique at 0.2 Telsa in a pig model.
J Magn Reson Imaging.
1999;
10
841-844
MissingFormLabel
- 25
Omary R A, Frayne R, Unal O. et al .
MR-guided angioplasty of renal artery stenosis in a pig model: a feasibility study.
J Vasc Interv Radiol.
2000;
11
373-381
MissingFormLabel
- 26
Frayne R, Weigel C, Yanng Z. et al .
MR evaluation of signal emitting coatings.
In, Proceedings of the 7th Annual Meetin of ISMRM, Philadelphia, Pennsylvania, USA,.
1999;
580
MissingFormLabel
- 27
Wendt M, Busch M, Wetzler R. et al .
Shifted rotated keyhole imaging and active tip-tracking for interventional procedure
guidance.
J Magn Reson Imaging.
1998;
8
258-261
MissingFormLabel
- 28
Glowinski A, Adam G, Bucker A. et al .
Catheter visualization using locally induced, actively controlled field inhomogeneities.
Magn Reson Med.
1997;
38
253-258
MissingFormLabel
- 29
Dumoulin C L, Souza S P, Darrow R D.
Real-time position monitoring of invasive devices using magnetic resonance.
Magn Reson Med.
1993;
29
411-415
MissingFormLabel
- 30
Wendt M, Busch M, Wetzler R. et al .
Shifted rotated keyhole imaging and active tip-tracking for interventional procedure
guidance.
J Magn Reson Imaging.
1998;
8
258-261
MissingFormLabel
- 31
Flask C, Elgort D, Wong E. et al .
A method for fast 3D tracking using tuned fiducial markers and a limited projection
reconstruction FISP (LPR-FISP) sequence.
J Magn Reson Imaging.
2001;
14
617-627
MissingFormLabel
- 32
Zuehlsdorff S, Umathum R, Volz S. et al .
MR coil design for simultaneous tip tracking and curvature delineation of a catheter.
Magn Reson Med.
2004;
52
214-218
MissingFormLabel
- 33
Duerk J L, Lewin J S, Wendt M. et al .
Remember true FISP? A high SNR, near 1-second imaging method for T2- like contrast
in interventional MRI at.2 T.
J Magn Reson Imaging.
1998;
8
203-208
MissingFormLabel
- 34
Quick H H, Kuehl H, Kaiser G. et al .
Interventional MRA using actively visualized catheters, TrueFISP, and real-time image
fusion.
Magn Reson Med.
2003;
49
129-137
MissingFormLabel
- 35
Liu C Y, Farahani K, Lu D S. et al .
Safety of MRI-guided endovascular guidewire applications.
J Magn Reson Imaging.
2000;
12
75-78
MissingFormLabel
- 36
Nitz W R, Oppelt A, Renz W. et al .
On the heating of linear conductive structures as guide wires and catheters in interventional
MRI.
J Magn Reson Imaging.
2001;
13
105-114
MissingFormLabel
- 37
Ladd M E, Quick H H.
Reduction of resonant RF heating in intravascular catheters using coaxial chokes.
Magn Reson Med.
2000;
43
615-619
MissingFormLabel
- 38
Weiss S, Vernickel P, Schaeffter T. et al .
Transmission line for improved RF safety of interventional devices.
Magn Reson Med.
2005;
54
182-189
MissingFormLabel
- 39
Burl M, Coutts G A, Young I R.
Tuned fiducial markers to identify body locations with minimal perturbation of tissue
magnetization.
Magn Reson Med.
1996;
36
491-493
MissingFormLabel
- 40
Quick H H, Zenge M O, Kuehl H. et al .
Interventional magnetic resonance angiography with no strings attached: Wireless active
catheter visualization.
Magn Reson Med.
2005;
53
446-455
MissingFormLabel
- 41
Kuehne T, Saeed M, Higgins C B. et al .
Endovascular stents in pulmonary valve and artery in swine: feasibility study of MR
imaging-guided deployment and postinterventional assessment.
Radiology.
2003;
226
475-481
MissingFormLabel
- 42
Wong E Y, Zhang Q, Duerk J L. et al .
An optical system for wireless detuning of parallel resonant circuits.
J Magn Reson Imaging.
2000;
12
632-638
MissingFormLabel
- 43
Kivelitz D, Wagner S, Schnorr J. et al .
A vascular stent as an active component for locally enhanced magnetic resonance imaging:
initial in vivo imaging results after catheter-guided placement in rabbits.
Invest Radiol.
2003;
38
147-152
MissingFormLabel
- 44
Scheffler K, Korvink J G.
Navigation with Hall sensor device for interventional MRI.
Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan,.
2004;
950
MissingFormLabel
- 45
Bock M, Umathum R, Sikora J. et al .
A Faraday effect position sensor for interventional magnetic resonance imaging.
Phys Med Biol.
2006;
51
999-1009
MissingFormLabel
- 46
Huegli R W, Aschwanden M, Scheffler K. et al .
Fluoroscopic contrast-enhanced MR angiography with a magnetization-prepared steady-state
free precession technique in peripheral arterial occlusive disease.
Am J Roentgenol.
2006;
187
242-247
MissingFormLabel
- 47
Kaul M G, Stork A, Bansmann P M. et al .
Evaluation von Balanced Steady-State Free Precession (TrueFISP) und k-Raum segmentierter
Gradientenechosequenzen für die 3D-MR-Koronarangiografie mit Navigator-Technik bei
3 Tesla.
Fortschr Röntgenstr.
2004;
176
1560-1565
MissingFormLabel
- 48
Wacker F K, Reither K, Ebert W. et al .
MR Image-guided Endovascular Procedures with the Ultrasmall Superparamagnetic Iron
Oxide SH U 555 C as an Intravascular Contrast Agent: Study in Pigs.
Radiology.
2003;
226
459-464
MissingFormLabel
- 49
Bakker C J, Bos C, Weinmann H J.
Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy.
Magn Reson Med.
2001;
45
17-23
MissingFormLabel
- 50
Wacker F K, Wendt M, Ebert W. et al .
Use of a blood-pool contrast agent for MR-guided vascular procedures: feasibility
of ultrasmall superparamagnetic iron oxide particles.
Acad Radiol.
2002;
9
1251-1254
MissingFormLabel
- 51
Maes R M, Lewin J S, Duerk J L. et al .
Combined use of the intravascular blood-pool agent, gadomer, and carbon dioxide: a
novel type of double-contrast magnetic resonance angiography (MRA).
J Magn Reson Imaging.
2005;
21
645-649
MissingFormLabel
- 52
Eggebrecht H, Kuhl H, Kaiser G M. et al .
Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine
model of descending aortic dissection.
Eur Heart J.
2006;
27
613-620
MissingFormLabel
- 53
Bücker A, Neuerburg J M, Adam G. et al .
MR-gesteuerte Spiralembolisation von Nierenarterien in einem Tiermodell.
Fortschr Röntgenstr.
2003;
175
271-274
MissingFormLabel
- 54
Fink C, Bock M, Umathum R. et al .
Renal embolization: feasibility of magnetic resonance-guidance using active catheter
tracking and intraarterial magnetic resonance angiography.
Invest Radiol.
2004;
39
111-119
MissingFormLabel
- 55
Buecker A, Spuentrup E, Grabitz R. et al .
Magnetic resonance-guided placement of atrial septal closure device in animal model
of patent foramen ovale.
Circulation.
2002;
106
511-515
MissingFormLabel
- 56
Koops A, Lutomsky B, Steinke M. et al .
Kavotrikuspide Isthmusablation in der interventionellen MRT: Erste Erfahrungen mit
einem neuartigen elektophysiologischen Katheter im Schweinemodell.
Fortschr Röntgenstr.
2006;
178
S1
MissingFormLabel
- 57
Arepally A, Karmarkar P V, Qian D. et al .
Evaluation of MR/fluoroscopy-guided portosystemic shunt creation in a swine model.
J Vasc Interv Radiol.
2006;
17
1165-1173
MissingFormLabel
- 58
Manke C, Nitz W R, Lenhart M. et al .
Stentangioplastie von Beckenarterienstenosen unter MRT-Kontrolle: Erste klinische
Ergebnisse.
Fortschr Röntgenstr.
2000;
172
92-97
MissingFormLabel
- 59
Razavi R, Hill D L, Keevil S F. et al .
Cardiac catheterisation guided by MRI in children and adults with congenital heart
disease.
Lancet.
2003;
362
1877-1882
MissingFormLabel
- 60
Karmarkar P V, Kraitchman D L, Izbudak I. et al .
MR-trackable intramyocardial injection catheter.
Magn Reson Med.
2004;
51
1163-1172
MissingFormLabel
- 61
Miller D L, Balter S, Cole P E. et al .
Radiation doses in interventional radiology procedures: the RAD-IR study: part I:
overall measures of dose.
J Vasc Interv Radiol.
2003;
14
711-727
MissingFormLabel
- 62
Mooney R B, McKinstry C S, Kamel H A.
Absorbed dose and deterministic effects to patients from interventional neuroradiology.
Br J Radiol.
2000;
73
745-751
MissingFormLabel
- 63
Shellock F G, Crues J V.
MR procedures: biologic effects, safety, and patient care.
Radiology.
2004;
232
635-652
MissingFormLabel
- 64
International Electrotechnical Commission .
IEC 60 601 - 2-33 Medical electrical equipment - Part 2 - 33: Particular requirements
for the safety of magnetic resonance equipment for medical diagnosis. Edition 2.1
consolidated with amendment 1:2005.
2005;
MissingFormLabel
- 65
Bakker C J, Smits H F, Bos C. et al .
MR-guided balloon angioplasty: in vitro demonstration of the potential of MRI for
guiding, monitoring, and evaluating endovascular interventions.
J Magn Reson Imaging.
1998;
8
245-250
MissingFormLabel
- 66
Mekle R, Hofmann E, Scheffler K. et al .
A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional
peripheral magnetic resonance angiography (ipMRA).
J Magn Reson Imaging.
2006;
23
145-155
MissingFormLabel
Prof. Frank K. Wacker
Klinik für Radiologie und Nuklearmedizin, Charité - Universitätsmedizin Berlin, Campus
Benjamin Franklin
Hindenburgdamm 30
12203 Berlin
Telefon: ++49/30/84 45 30 42
Telefon: ++49/1788212488
eMail: frank.wacker@charite.de