Rofo 2007; 179(4): 355-364
DOI: 10.1055/s-2007-962930
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Magnetresonanztomografie-gestützte endovaskuläre Interventionen

Magnetic Resonance Imaging-Guided Endovascular InterventionsF. K. Wacker1 , M. Bock2
  • 1Klinik für Radiologie und Nuklearmedizin, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin
  • 2Abt. Medizinische Physik in der Radiologie (E020), Deutsches Krebsforschungszentrum (dkfz), Heidelberg
Weitere Informationen

Publikationsverlauf

eingereicht: 31.7.2006

angenommen: 29.12.2006

Publikationsdatum:
07. März 2008 (online)

Zusammenfassung

Interventionen unter MRT-Kontrolle waren in der Vergangenheit aufgrund langer Messzeiten und des eingeschränkten Patientenzugangs nur mit großen Schwierigkeiten durchzuführen. Die Weiterentwicklung der MR-Geräte, die Verbesserungen der MR-Messsequenzen, die schnelle Bildgebung ermöglichen, und die zunehmende Verfügbarkeit von im MRT einsetzbaren Instrumenten haben viele dieser Hindernisse beseitigt. Parallel zur Entwicklung der MRT werden perkutane und endovaskuläre Interventionen unter Bildkontrolle immer komplexer und stellen immer höhere Ansprüche an die Bildgebung, mit denen solche Eingriffe gesteuert und kontrolliert werden. Diese zunächst parallel laufenden Trends zeigen in den letzten Jahren eine gewisse Konvergenz. Das Interesse an der MRT-Kontrolle von perkutanen und endovaskulären Interventionen nimmt zu, nicht zuletzt auch aufgrund der Eigenschaften der MRT, sowohl die Morphologie mit exzellentem Weichteilkontrast als auch funktionelle Informationen darzustellen. Das Ziel dieser Übersicht ist es, die technischen Voraussetzungen MRT-gesteuerter endovaskulärer Interventionen darzustellen, erste experimentelle und klinische Anwendungen zu diskutieren und Sicherheitsaspekte der Technik zu erörtern.

Abstract

Historically, the combination of relatively long imaging times and restricted patient access has made MRI-guided intervention an impractical technique. Recent developments in MR hardware, pulse sequence improvements that have allowed the development of rapid imaging, and the availability of instruments that can be used under MR guidance have helped to overcome many of the disadvantages of MRI. Parallel to the development of MRI, image-guided percutaneous and endovascular interventions are becoming increasingly complex and require progressively more sophisticated imaging techniques to guide and control such interventions. These initially parallel trends have converged in the last couple of years. The ability of MRI to provide both unprecedented morphology and functional information has created a growing interest in both percutaneous and endovascular MRI-guided interventions. The goal of this review is to describe the technical prerequisites for MR-guided endovascular interventions, to discuss experimental and clinical applications, and to explain safety aspects of this technique.

Literatur

  • 1 Rhee T K, Larson A C, Prasad P V. et al . Feasibility of blood oxygenation level-dependent MR imaging to monitor hepatic transcatheter arterial embolization in rabbits.  J Vasc Interv Radiol. 2005;  16 1523-1528
  • 2 Thomas M, Schulz T, Schmidt F. et al . MRT-gesteuerte Stanzbiopsie der Schulter: Möglichkeiten und Erfahrungen an einem vertikal offenen 0,5-T-System.  Fortschr Röntgenstr. 2005;  177 1276-1283
  • 3 Gaffke G, Gebauer B, Gnauck M. et al . Potenzial der MRT für die Radiofrequenzablation von Lebertumoren.  Fortschr Röntgenstr. 2005;  177 77-83
  • 4 Boss A, Clasen S, Kuczyk M. et al . Radiofrequenzablation des Nierenzellkarzinoms unter MR-Bildgebung: Erste Ergebnisse.  Fortschr Röntgenstr. 2005;  177 1139-1145
  • 5 Obenauer S, Grabbe E, Knollmann F. Stellenwert der MR-gestützten Lokalisation und Biopsie von Brustläsionen.  Fortschr Röntgenstr. 2006;  178 477-483
  • 6 Paetzel C, Zorger N, Bachthaler M. et al . Feasibility of MR-guided angioplasty of femoral artery stenoses using real-time imaging and intraarterial contrast-enhanced MR angiography.  Fortschr Röntgenstr. 2004;  176 1232-1236
  • 7 Dick A, Raman V, Raval A. et al . Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined X-ray/MRI suite.  Catheterization and cardiovascular interventions. 2005;  64 265-274
  • 8 Vogl T J, Balzer J O, Mack M G. et al . Hybrid MR interventional imaging system: combined MR and angiography suites with single interactive table. Feasibility study in vascular liver tumor procedures.  Eur Radiol. 2002;  12 1394-1400
  • 9 Fahrig R, Butts K, Rowlands J A. et al . A truly hybrid interventional MR/X-ray system: feasibility demonstration.  J Magn Reson Imaging. 2001;  13 294-300
  • 10 Wacker F K, Elgort D, Hillenbrand C M. et al . The catheter-driven MRI scanner: a new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI.  AJR. 2004;  183 391-395
  • 11 Bock M, Volz S, Zuhlsdorff S. et al . MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils.  J Magn Reson Imaging. 2004;  19 580-589
  • 12 Bock M, Muller S, Zuehlsdorff S. et al . Active catheter tracking using parallel MRI and real-time image reconstruction.  Magn Reson Med. 2006;  55 1454-1459
  • 13 Guttman M A, Kellman P, Dick A J. et al . Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD.  Magn Reson Med. 2003;  50 315-321
  • 14 Wacker F K, Faiss S, Reither K. et al . MR imaging-guided biliary drainage in an open low-field system: first clinical experiences.  Fortschr Röntgenstr. 2000;  172 744-747
  • 15 Hagspiel K D, Kandarpa K, Silverman S G. Interactive MR-guided percutaneous nephrostomy.  J Magn Reson Imaging. 1998;  8 1319-1322
  • 16 Williams J R. The interdependence of staff and patient doses in interventional radiology.  Br J Radiol. 1997;  70 498-503
  • 17 Martin A J, Saloner D A, Roberts T P. et al . Carotid stent delivery in an XMR suite: immediate assessment of the physiologic impact of extracranial revascularization.  Am J Neuroradiol. 2005;  26 531-537
  • 18 Deng J, Miller F H, Rhee T K. et al . Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization.  J Vasc Interv Radiol. 2006;  17 1195-1200
  • 19 Hillenbrand C M, Elgort D R, Wong E Y. et al . Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil.  Magn Reson Med. 2004;  51 668-675
  • 20 Omary R A, Gehl J A, Schirf B E. et al . MR imaging- versus conventional X-ray fluoroscopy-guided renal angioplasty in swine: prospective randomized comparison.  Radiology. 2006;  238 489-496
  • 21 Elgort D R, Hillenbrand C M, Zhang S. et al . Image-guided and -monitored renal artery stenting using only MRI.  J Magn Reson Imaging. 2006;  23 619-627
  • 22 Green J D, Omary R A, Schirf B E. et al . Comparison of X-ray fluoroscopy and interventional magnetic resonance imaging for the assessment of coronary artery stenoses in swine.  Magn Reson Med. 2005;  54 1094-1099
  • 23 Bakker C J, Hoogeveen R M, Weber J. et al . Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions.  Magn Reson Med. 1996;  36 816-820
  • 24 Wacker F K, Reither K, Branding G. et al . Magnetic resonance-guided vascular catheterization: feasibility using a passive tracking technique at 0.2 Telsa in a pig model.  J Magn Reson Imaging. 1999;  10 841-844
  • 25 Omary R A, Frayne R, Unal O. et al . MR-guided angioplasty of renal artery stenosis in a pig model: a feasibility study.  J Vasc Interv Radiol. 2000;  11 373-381
  • 26 Frayne R, Weigel C, Yanng Z. et al . MR evaluation of signal emitting coatings.  In, Proceedings of the 7th Annual Meetin of ISMRM, Philadelphia, Pennsylvania, USA,. 1999;  580
  • 27 Wendt M, Busch M, Wetzler R. et al . Shifted rotated keyhole imaging and active tip-tracking for interventional procedure guidance.  J Magn Reson Imaging. 1998;  8 258-261
  • 28 Glowinski A, Adam G, Bucker A. et al . Catheter visualization using locally induced, actively controlled field inhomogeneities.  Magn Reson Med. 1997;  38 253-258
  • 29 Dumoulin C L, Souza S P, Darrow R D. Real-time position monitoring of invasive devices using magnetic resonance.  Magn Reson Med. 1993;  29 411-415
  • 30 Wendt M, Busch M, Wetzler R. et al . Shifted rotated keyhole imaging and active tip-tracking for interventional procedure guidance.  J Magn Reson Imaging. 1998;  8 258-261
  • 31 Flask C, Elgort D, Wong E. et al . A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR-FISP) sequence.  J Magn Reson Imaging. 2001;  14 617-627
  • 32 Zuehlsdorff S, Umathum R, Volz S. et al . MR coil design for simultaneous tip tracking and curvature delineation of a catheter.  Magn Reson Med. 2004;  52 214-218
  • 33 Duerk J L, Lewin J S, Wendt M. et al . Remember true FISP? A high SNR, near 1-second imaging method for T2- like contrast in interventional MRI at.2 T.  J Magn Reson Imaging. 1998;  8 203-208
  • 34 Quick H H, Kuehl H, Kaiser G. et al . Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion.  Magn Reson Med. 2003;  49 129-137
  • 35 Liu C Y, Farahani K, Lu D S. et al . Safety of MRI-guided endovascular guidewire applications.  J Magn Reson Imaging. 2000;  12 75-78
  • 36 Nitz W R, Oppelt A, Renz W. et al . On the heating of linear conductive structures as guide wires and catheters in interventional MRI.  J Magn Reson Imaging. 2001;  13 105-114
  • 37 Ladd M E, Quick H H. Reduction of resonant RF heating in intravascular catheters using coaxial chokes.  Magn Reson Med. 2000;  43 615-619
  • 38 Weiss S, Vernickel P, Schaeffter T. et al . Transmission line for improved RF safety of interventional devices.  Magn Reson Med. 2005;  54 182-189
  • 39 Burl M, Coutts G A, Young I R. Tuned fiducial markers to identify body locations with minimal perturbation of tissue magnetization.  Magn Reson Med. 1996;  36 491-493
  • 40 Quick H H, Zenge M O, Kuehl H. et al . Interventional magnetic resonance angiography with no strings attached: Wireless active catheter visualization.  Magn Reson Med. 2005;  53 446-455
  • 41 Kuehne T, Saeed M, Higgins C B. et al . Endovascular stents in pulmonary valve and artery in swine: feasibility study of MR imaging-guided deployment and postinterventional assessment.  Radiology. 2003;  226 475-481
  • 42 Wong E Y, Zhang Q, Duerk J L. et al . An optical system for wireless detuning of parallel resonant circuits.  J Magn Reson Imaging. 2000;  12 632-638
  • 43 Kivelitz D, Wagner S, Schnorr J. et al . A vascular stent as an active component for locally enhanced magnetic resonance imaging: initial in vivo imaging results after catheter-guided placement in rabbits.  Invest Radiol. 2003;  38 147-152
  • 44 Scheffler K, Korvink J G. Navigation with Hall sensor device for interventional MRI.  Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan,. 2004;  950
  • 45 Bock M, Umathum R, Sikora J. et al . A Faraday effect position sensor for interventional magnetic resonance imaging.  Phys Med Biol. 2006;  51 999-1009
  • 46 Huegli R W, Aschwanden M, Scheffler K. et al . Fluoroscopic contrast-enhanced MR angiography with a magnetization-prepared steady-state free precession technique in peripheral arterial occlusive disease.  Am J Roentgenol. 2006;  187 242-247
  • 47 Kaul M G, Stork A, Bansmann P M. et al . Evaluation von Balanced Steady-State Free Precession (TrueFISP) und k-Raum segmentierter Gradientenechosequenzen für die 3D-MR-Koronarangiografie mit Navigator-Technik bei 3 Tesla.  Fortschr Röntgenstr. 2004;  176 1560-1565
  • 48 Wacker F K, Reither K, Ebert W. et al . MR Image-guided Endovascular Procedures with the Ultrasmall Superparamagnetic Iron Oxide SH U 555 C as an Intravascular Contrast Agent: Study in Pigs.  Radiology. 2003;  226 459-464
  • 49 Bakker C J, Bos C, Weinmann H J. Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy.  Magn Reson Med. 2001;  45 17-23
  • 50 Wacker F K, Wendt M, Ebert W. et al . Use of a blood-pool contrast agent for MR-guided vascular procedures: feasibility of ultrasmall superparamagnetic iron oxide particles.  Acad Radiol. 2002;  9 1251-1254
  • 51 Maes R M, Lewin J S, Duerk J L. et al . Combined use of the intravascular blood-pool agent, gadomer, and carbon dioxide: a novel type of double-contrast magnetic resonance angiography (MRA).  J Magn Reson Imaging. 2005;  21 645-649
  • 52 Eggebrecht H, Kuhl H, Kaiser G M. et al . Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection.  Eur Heart J. 2006;  27 613-620
  • 53 Bücker A, Neuerburg J M, Adam G. et al . MR-gesteuerte Spiralembolisation von Nierenarterien in einem Tiermodell.  Fortschr Röntgenstr. 2003;  175 271-274
  • 54 Fink C, Bock M, Umathum R. et al . Renal embolization: feasibility of magnetic resonance-guidance using active catheter tracking and intraarterial magnetic resonance angiography.  Invest Radiol. 2004;  39 111-119
  • 55 Buecker A, Spuentrup E, Grabitz R. et al . Magnetic resonance-guided placement of atrial septal closure device in animal model of patent foramen ovale.  Circulation. 2002;  106 511-515
  • 56 Koops A, Lutomsky B, Steinke M. et al . Kavotrikuspide Isthmusablation in der interventionellen MRT: Erste Erfahrungen mit einem neuartigen elektophysiologischen Katheter im Schweinemodell.  Fortschr Röntgenstr. 2006;  178 S1
  • 57 Arepally A, Karmarkar P V, Qian D. et al . Evaluation of MR/fluoroscopy-guided portosystemic shunt creation in a swine model.  J Vasc Interv Radiol. 2006;  17 1165-1173
  • 58 Manke C, Nitz W R, Lenhart M. et al . Stentangioplastie von Beckenarterienstenosen unter MRT-Kontrolle: Erste klinische Ergebnisse.  Fortschr Röntgenstr. 2000;  172 92-97
  • 59 Razavi R, Hill D L, Keevil S F. et al . Cardiac catheterisation guided by MRI in children and adults with congenital heart disease.  Lancet. 2003;  362 1877-1882
  • 60 Karmarkar P V, Kraitchman D L, Izbudak I. et al . MR-trackable intramyocardial injection catheter.  Magn Reson Med. 2004;  51 1163-1172
  • 61 Miller D L, Balter S, Cole P E. et al . Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose.  J Vasc Interv Radiol. 2003;  14 711-727
  • 62 Mooney R B, McKinstry C S, Kamel H A. Absorbed dose and deterministic effects to patients from interventional neuroradiology.  Br J Radiol. 2000;  73 745-751
  • 63 Shellock F G, Crues J V. MR procedures: biologic effects, safety, and patient care.  Radiology. 2004;  232 635-652
  • 64 International Electrotechnical Commission . IEC 60 601 - 2-33 Medical electrical equipment - Part 2 - 33: Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. Edition 2.1 consolidated with amendment 1:2005.  2005; 
  • 65 Bakker C J, Smits H F, Bos C. et al . MR-guided balloon angioplasty: in vitro demonstration of the potential of MRI for guiding, monitoring, and evaluating endovascular interventions.  J Magn Reson Imaging. 1998;  8 245-250
  • 66 Mekle R, Hofmann E, Scheffler K. et al . A polymer-based MR-compatible guidewire: a study to explore new prospects for interventional peripheral magnetic resonance angiography (ipMRA).  J Magn Reson Imaging. 2006;  23 145-155

Prof. Frank K. Wacker

Klinik für Radiologie und Nuklearmedizin, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin

Hindenburgdamm 30

12203 Berlin

Telefon: ++49/30/84 45 30 42

Telefon: ++49/1788212488

eMail: frank.wacker@charite.de