RSS-Feed abonnieren
DOI: 10.1055/s-2007-963263
© Georg Thieme Verlag KG Stuttgart · New York
Kombinierte radiologische und nuklearmedizinische Bildgebung in Tierexperimenten: Ein Überblick über die aktuellen Möglichkeiten
Combination of Radiological And Nuclear Medical Imaging in Animals: An Overview About the Today’s PossibiltiesPublikationsverlauf
eingereicht: 20.2.2007
angenommen: 3.5.2007
Publikationsdatum:
16. Juli 2007 (online)

Zusammenfassung
Die molekulare Bildgebung von Kleintieren hat in den letzten Jahren eine schnelle Entwicklung durchlaufen. Ein Grund dafür ist, dass verschiedene Forschungsgebiete davon profitieren können. Neben forschungstechnischen Gründen spielt dabei auch die Reduzierung der Tierzahl aus ethischen und finanziellen Gründen eine Rolle. Durch die nichtinvasiven Bildgebungsmethoden ist es möglich, ein Tier in einer Versuchsreihe mehrmals zu untersuchen, ohne dass das Tier getötet werden muss. Dadurch ist es möglich, im selben Tier die Entwicklung eines pathologischen Prozesses zu verfolgen. Die dabei angewendeten radiologischen Methoden, wie die Magnetresonanztomografie oder Computertomografie, aber auch die nuklearmedizinischen Methoden, wie die „Single Photon Emissions Computer Tomography” oder „Positronen Emissions Tomography,” weisen Nachteile auf. Bei den radiologischen Methoden ist die molekulare Aussage begrenzt, während die nuklearmedizinischen Methoden darunter leiden, dass es schwierig ist einen erhöhten Uptake einer anatomischen Lokalisation zuzuordnen. Das führt dazu, dass die Fusion der Methoden in vielen Fällen zu einem zusätzlichen Gewinn an Informationen führt. In dieser Übersichtsarbeit sollen die heutigen Möglichkeiten kombinierter Bildgebung und deren Vorteile aber auch die Nachteile aufgezeigt werden.
Abstract
Molecular imaging of small animals has made considerable progress in the last years. Various research fields are interested in imaging small animals due to the lower numbers of animals per experiment. This has advantages with respect to financial, ethical and research aspects. Non-invasive imaging allows examination of one animal several times during the same experiment. This makes it possible to follow a pathological process in the same animal over time. However, the radiological methods used such as magnetic resonance imaging or computed tomography as well as the nuclear medicine methods such as single photon emission computed tomography or positron emission tomography suffer from disadvantages. Molecular aspects are limited in the radiological methods while anatomical localization is difficult in nuclear medicine. The fusion of these methods leads to additional information. This review shows today’s possibilities with their advantages as well as disadvantages.
Key words
MR imaging - radionuclide imaging - SPECT - animal investigations - CT - PET CT
Literatur
- 1
Gluer C C, Barkmann R, Hahn H K. et al .
Parametric biomedical imaging-what defines the quality of quantitative radiological
approaches?.
Fortschr Röntgenstr.
2006;
178
1187-1201
MissingFormLabel
- 2
Lauterbur P C.
All science is interdisciplinary - from magnetic moments to molecules to men (Nobel
lecture).
Angew Chem Int Ed Engl.
2005;
44
1004-1011
MissingFormLabel
- 3
Lauterbur P.
Image formation of induced local interactions: examples employing NMR.
Nature.
1973;
242
190-191
MissingFormLabel
- 4
Alfke H, Kohle S, Maurer E. et al .
Analysis of mice tumor models using dynamic MRI data and a dedicated software platform.
Fortschr Röntgenstr.
2004;
176
1226-1231
MissingFormLabel
- 5
Dubowitz D J, Tyszka J M, Sewry C A. et al .
High resolution magnetic resonance imaging of the brain in the dy/dy mouse with merosin-deficient
congenital muscular dystrophy.
Neuromuscul Disord.
2000;
10
292-298
MissingFormLabel
- 6
Fayad Z A, Fallon J T, Shinnar M. et al .
Noninvasive In vivo high-resolution magnetic resonance imaging of atherosclerotic
lesions in genetically engineered mice.
Circulation.
1998;
98
1541-1547
MissingFormLabel
- 7
Jacobs R E, Ahrens E T, Dickinson M E. et al .
Towards a microMRI atlas of mouse development.
Comput Med Imaging Graph.
1999;
23
15-24
MissingFormLabel
- 8
Maxwell R J, Nielsen F U, Breidahl T. et al .
Effects of combretastatin on murine tumours monitored by 31P MRS, 1H MRS and 1H MRI.
Int J Radiat Oncol Biol Phys.
1998;
42
891-894
MissingFormLabel
- 9
Slawson S E, Roman B B, Williams D S. et al .
Cardiac MRI of the normal and hypertrophied mouse heart.
Magn Reson Med.
1998;
39
980-987
MissingFormLabel
- 10
Heverhagen J T, Hahn H K, Wegmann M. et al .
Volumetric analysis of mice lungs in a clinical magnetic resonance imaging scanner.
MAGMA.
2004;
17
80-85
MissingFormLabel
- 11
Simon G, drup-Link H, Vopelius-Feldt von J. et al .
MRT der Arthritis mit dem USPIO SH U 555 C: Optimierung des T1-Enhancements.
Fortschr Röntgenstr.
2006;
178
200-206
MissingFormLabel
- 12
Hess A, Sergejeva M, Budinsky L. et al .
Imaging of hyperalgesia in rats by functional MRI.
Eur J Pain.
2007;
11
109-119
MissingFormLabel
- 13
Bohm I, Traber F, Block W. et al .
Molekulare Bildgebung von Apoptose und Nekrose - Zellbiologische Grundlagen und Einsatz
in der Onkologie.
Fortschr Röntgenstr.
2006;
178
263-271
MissingFormLabel
- 14
Graichen H, Lochmuller E M, Wolf E. et al .
A non-destructive technique for 3-D microstructural phenotypic characterisation of
bones in genetically altered mice: preliminary data in growth hormone transgenic animals
and normal controls.
Anat Embryol.
1999;
199
239-248
MissingFormLabel
- 15
Kennel S J, Davis I A, Branning J. et al .
High resolution computed tomography and MRI for monitoring lung tumor growth in mice
undergoing radioimmunotherapy: correlation with histology.
Med Phys.
2000;
27
1101-1107
MissingFormLabel
- 16
Paulus M J, Gleason S S, Kennel S J. et al .
High resolution X-ray computed tomography: an emerging tool for small animal cancer
research.
Neoplasia.
2000;
2
62-70
MissingFormLabel
- 17
Balaban R S, Hampshire V A.
Challenges in small animal noninvasive imaging.
ILAR J.
2001;
42
248-262
MissingFormLabel
- 18
Behr T M, Gotthardt M, Becker W. et al .
Radioiodination of monoclonal antibodies, proteins and peptides for diagnosis and
therapy. A review of standardized, reliable and safe procedures for clinical grade
levels kBq to GBq in the Gottingen/Marburg experience.
Nuklearmedizin.
2002;
41
71-79
MissingFormLabel
- 19
Stein R, Govindan S V, Mattes M J. et al .
Improved iodine radiolabels for monoclonal antibody therapy.
Cancer Res.
2003;
63
111-118
MissingFormLabel
- 20
Beekman F, Have van der F.
The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging.
Eur J Nucl Med Mol Imaging.
2007;
34
151-161
MissingFormLabel
- 21
Cherry S R.
The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons) - advances in PET
imaging technology.
J Nucl Med.
2006;
47
1735-1745
MissingFormLabel
- 22
Massoud T F, Gambhir S S.
Molecular imaging in living subjects: seeing fundamental biological processes in a
new light.
Genes Dev.
2003;
17
545-580
MissingFormLabel
- 23
Jacobs R E, Cherry S R.
Complementary emerging techniques: high-resolution PET and MRI.
Curr Opin Neurobiol.
2001;
11
621-629
MissingFormLabel
- 24
Pichler B J, Judenhofer M S, Catana C. et al .
Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI.
J Nucl Med.
2006;
47
639-647
MissingFormLabel
- 25
Catana C, Wu Y, Judenhofer M S. et al .
Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible
PET scanner.
J Nucl Med.
2006;
47
1968-1976
MissingFormLabel
- 26
Del Guerra A, Belcari N.
Advances in animal PET scanners.
Q J Nucl Med.
2002;
46
35-47
MissingFormLabel
- 27
Beyer T, Townsend D W, Brun T. et al .
A combined PET/CT scanner for clinical oncology.
J Nucl Med.
2000;
41
1369-1379
MissingFormLabel
- 28
Deroose C M, DE A, Loening A M. et al .
Multimodality Imaging of Tumor Xenografts and Metastases in Mice with Combined Small-Animal
PET, Small-Animal CT, and Bioluminescence Imaging.
J Nucl Med.
2007;
48
295-303
MissingFormLabel
- 29
Muller C, Bruhlmeier M, Schubiger P A. et al .
Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in
vivo.
J Nucl Med.
2006;
47
2057-2064
MissingFormLabel
- 30
Gotthardt M, Lalyko G, Eerd-Vismale van J. et al .
A new technique for in vivo imaging of specific GLP-1 binding sites: First results
in small rodents.
Regul Pept.
2006;
137
162-167
MissingFormLabel
- 31
Wild D, Behe M, Wicki A. et al .
Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1
(GLP-1) receptor targeting.
J Nucl Med.
2006;
47
2025-2033
MissingFormLabel
- 32
Grimm J, Wunder A.
Molekulare Bildgebung: Stand der Forschung.
Fortschr Röntgenstr.
2005;
177
326-337
MissingFormLabel
Dr. Martin Behe
Klinik für Nuklearmedizin, Philipps-Universität Marburg
Baldingerstraße
35043 Marburg
Telefon: ++49/64 21/2 86 28 08
Fax: ++49/64 21/2 86 28 99
eMail: behe@staff.uni-marburg.de