Subscribe to RSS
DOI: 10.1055/s-2007-963350
© Georg Thieme Verlag KG Stuttgart · New York
Hochaufgelöste quantitative MR-tomografische Bestimmung der subendo- und subepimyokardialen Perfusion unter Stress und in Ruhe
High-Resolution MRI for the Quantitative Evaluation of Subendocardial and Subepicardial Perfusion Under Pharmacological Stress and At RestPublication History
Eingegangen: 10.4.2007
Angenommen: 19.6.2007
Publication Date:
17 August 2007 (online)

Zusammenfassung
Ziel: Die MR-Stress-Perfusionsbildgebung ermöglicht die Quantifizierung der myokardialen Perfusion, die Bestimmung der myokardialen Perfusionsreserve und des Verhältnisses zwischen subendo- und subepikardialer Perfusion. Ziel dieser Studie war es, eine hochauflösende Perfusionssequenz gegenüber einer Standard-Sequenz zu evaluieren. Material und Methoden: Bei 10 herzgesunden Probandinnen und Probanden wurden First-Pass-Perfusionsuntersuchungen in Ruhe und unter Adenosin-Stress in Präbolus-Technik an einem 1,5-T-Gerät durchgeführt. Verwendet wurde eine SR-True-FISP-GRAPPA-Sequenz (Beschleunigungsfaktor 3) mit einer Auflösung von 1,8 × 1,8 mm. Als Vergleichskollektiv diente eine Gruppe von 12 weiteren herzgesunden Probanden, die am selben Gerät ebenso in Ruhe und Stress mit einer Standard-SR-TrueFISP-Sequenz und einer Auflösung von 2,7 × 3,3 mm untersucht wurden. Die myokardialen Konturen wurden manuell umfahren, automatisch in zwei Bereiche gleicher Dicke sowie acht Sektoren unterteilt und mit Basislinien- und Kontaminationskorrektur ausgewertet. Ergebnisse: Bei der GRAPPA-Sequenz ergab sich in Ruhe eine Verhältnis von subendo- zu subepimyokardialer Perfusion von 1,18 ± 0,32. Unter pharmakologisch induziertem Stress betrug das Verhältnis 1,08 ± 0,27. Für die Standard-Sequenz betrug das Verhältnis in Ruhe 1,15 ± 0,28 und unter Stress 1,11 ± 0,33. Für die hochauflösende Sequenz finden sich höhere Mittelwerte des Verhältnisses von subendo- zu subepimyokardialer Perfusion bei vergleichbaren Standardabweichungen, wobei die Unterschiede zwischen den Sequenzen noch nicht statistisch signifikant sind. Schlussfolgerungen: Die Bestimmung der subendomyokardialen und subepimyokardialen Perfusion ist mit einer hochauflösenden First-Pass-Perfusionssequenz möglich. Die hierbei zur Vermeidung systematischer Fehler eingesetzte höhere räumliche Auflösung führt zwar zu höherem Bildrauschen, jedoch nicht zu einer merklichen Verschlechterung der quantitativen Perfusionswerte unter Stress- und Ruhebedingungen.
Abstract
Purpose: MR stress perfusion imaging of the heart allows the quantification of myocardial perfusion and the evaluation of myocardial perfusion reserve (MPR) and the ratio of subendocardial to subepicardial perfusion at rest and under adenosine stress. The aim of this study was to evaluate a high-resolution GRAPPA sequence for quantitative MR first pass perfusion imaging in healthy volunteers. Materials and Methods: First pass stress and rest perfusion studies were performed on 10 healthy volunteers using a 1.5 T MR scanner with a multislice SR-TrueFISP first pass perfusion sequence with a GRAPPA algorithm (acceleration factor 3) in prebolus technique and an image resolution of 1.8 × 1.8 mm. For the comparison group, we examined 12 different healthy volunteers with a standard first pass perfusion SR-TrueFISP sequence using a resolution of 2.7 × 3.3 mm. Myocardial contours were manually delineated followed by an automatic division of the myocardium into two rings with an equal thickness for the subendo- and subepicardial layer. Eight sectors per slice were evaluated using contamination and baseline correction. Results: Using the GRAPPA sequence, the ratio of subendo- to subepimyocardial perfusion was 1.18 ± 0.32 for the examination at rest. Under pharmacologically induced stress, the ratio was 1.08 ± 0.27. For the standard sequence the ratio was 1.15 ± 0.28 at rest and 1.11 ± 0.33 under stress. For the high resolution sequence higher mean values for the subendo- to subepimyocardial ratio were obtained with comparable standard deviations. The difference between the sequences was not significant. Conclusion: The evaluation of subendomyocardial and subepimyocardial perfusion is feasible with a high-resolution first pass perfusion sequence. The use of a higher resolution to avoid systematic error leads to increased image noise. However, no relevant reduction in the quantitative perfusion values under stress and at rest was able to be depicted.
Key words
magnetic resonance tomography - myocardial stress perfusion - quantitative first pass perfusion - high-resolution MR imaging
Literatur
- 1
Schwaiger M.
Myocardial perfusion imaging with PET.
J Nucl Med.
1994;
35
693-698
MissingFormLabel
- 2
Demer L L, Gould K L, Goldstein R A. et al .
Assessment of coronary artery disease severity by positron emission tomography: comparison
with quantitative arteriography in 193 patients.
Circulation.
1989;
79
825-835
MissingFormLabel
- 3
Muzik O, Duvernoy C, Beanlands R S. et al .
Assessment of diagnostic performance of quantitative flow measurements in normal subjects
and patients with angiographically documented coronary artery disease by means of
nitrogen 13 ammonia and positron emission tomography.
J Am Coll Cardiol.
1998;
31
534-540
MissingFormLabel
- 4
Go R T, Marwick T H, MacIntyre W J. et al .
A prospective comparison of rubidium 82 PET and thallium SPECT myocardial perfusion
imaging using a single dipyridamole stress in the diagnosis of coronary artery disease.
J Nuc Med.
1990;
31
1899-1905
MissingFormLabel
- 5
Schwitter J, Nanz D, Kneifel S. et al .
Assessment of myocardial perfusion in coronary artery disease by magnetic resonance:
a comparison with positron emission tomography and coronary angiography.
Circulation.
2001;
103
2230-2235
MissingFormLabel
- 6
Okazawa H, Takahashi M, Hata T. et al .
Quantitative evaluation of myocardial blood flow and ejection fraction with a single
dose of (NH3)-N-13 and gated PET.
J Nucl Med.
2002;
43
999-1005
MissingFormLabel
- 7
Schwaiger M, Mehlin J.
Cardiological applications of nuclear medicine.
The Lancet.
1999;
54
6661-666
MissingFormLabel
- 8
Ibrahim T, Nekolla S G, Schreiber K. et al .
Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic
resonance imaging and positron emission tomography.
J Am Coll Cardiol.
2002;
39
864-870
MissingFormLabel
- 9
Bache R J, McHale P A, Greenfield JC Jr. et al .
Transmural myocardial perfusion during restricted coronary inflow in the awake dog.
Am J Physiol.
1977;
232
H645-651
MissingFormLabel
- 10
Ootaki Y, Kamohara K, Schenk S. et al .
Transmural distribution of myocardial blood perfusion and phasic coronary blood flow
pattern in a canine model of acute ischemia.
Int J of Cardiology.
2006;
107
382-388
MissingFormLabel
- 11
Klumpp B, Helber U, Fenchel M. et al .
Myocardial Perfusion MR-Imaging at 3 Tesla.
Fortschr Röntgenstr.
2006;
178
122
MissingFormLabel
- 12
Strach K, Meyer C, Naehle C P. et al .
High Resolution Myocardial Perfusion Imaging at 3 Tesla: Comparison to standard 1.5
Tesla perfusion studies and diagnostic accuracy in patients with suspected CAD.
Fortschr Röntgenstr.
2006;
178
122
MissingFormLabel
- 13
Ligabue G, Romagnoli R, Torricelli P. et al .
3 Tesla MR cardiac applications: 6 months experience of daily clinical practice with
emphasis on comparison with 1.5 Tesla for myocardial viability evaluation.
Fortschr Röntgenstr.
2005;
177
586
MissingFormLabel
- 14
Kondo M, Kawata K, Azuma A.
Relationship between Coronary Blood flow velocity waveform and transmural distribution
of myocardial blood flow in coronary artery.
Jpn Heart.
1999;
40
783-790
MissingFormLabel
- 15
Wilke N, Simm C, Zhang J. et al .
Contrast enhanced first pass myocardial perfusion imaging: correlation between myocardial
blood flow in dogs at rest and hyperemia.
Magn Reson Med.
1993;
29
485-497
MissingFormLabel
- 16
Kraitchman D L, Wilke N, Hexeberg E. et al .
Myocardial perfusion and function in dogs with moderate coronary stenosis.
Magn Reson Med.
1996;
35
771-780
MissingFormLabel
- 17
Jerosch-Herold M, Hu X, Murthy N S. et al .
Magnetic Resonance Imaging of Myocardial Contrast Enhancement with MS-325 and Its
Relation to Myocardial Blood Flow and the Perfusion Reserve.
J Magn Reson Imaging.
2003;
18
544-554
MissingFormLabel
- 18
Epstein F H, London J F, Peters D C. et al .
Multislice first-pass cardiac perfusion MRI: validation in a model of myocardial infarction.
Magn Reson Med.
2002;
47
482-491
MissingFormLabel
- 19
Klocke F J, Simonetti O P, Judd R M.
Limits of detection of regional differences in vasodilated flow in viable myocardium
by first-pass magnetic resonance perfusion imaging.
Circulation.
2001;
104
2412-2416
MissingFormLabel
- 20
Cullen J H, Horsfield M A, Reek C R. et al .
Myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic
resonance imaging.
J Am Coll Cardiol.
1999;
33
1386-1394
MissingFormLabel
- 21
Fritz-Hansen T, Rostrup E, Søndergaard L. et al .
Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation
assessed by MRI.
Magn Reson Med.
1998;
40
922-929
MissingFormLabel
- 22
Jerosch-Herold M, Seethamraju R T, Swingen C M. et al .
Analysis of Myocardial Perfusion MRI.
J Magn Reson Imaging.
2004;
19
758-770
MissingFormLabel
- 23
Muehling O M, Jerosch-Herold M, Panse P. et al .
Regional heterogeneity of myocardial perfusion in healthy human myocardium: Assessment
with Magnetic Resonance Perfusion Imaging.
J Cardiovasc Magn Reson.
2004;
6
499-507
MissingFormLabel
- 24
Muehling O M, Wilke N M, Panse P. et al .
Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant
arteriopathy assessed by magnetic resonance imaging.
J Am Coll Cardiol.
2003;
42
1054-1060
MissingFormLabel
- 25
Panting J R, Gatehouse P D, Yang G Z. et al .
Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular
magnetic resonance imaging.
N Engl J Med.
2002;
346
1948-1953
MissingFormLabel
- 26
Griswold M A, Jakob P M, Heidemann R M. et al .
Generalized autocalibrating partially.
Magn Reson Med.
2002;
47
1202-1210
MissingFormLabel
- 27
Köstler H, Sandstede J, Lipke C. et al .
Auto-SENSE perfusion imaging of the whole human heart.
J Magn Reson Imaging.
2003;
18
702-708
MissingFormLabel
- 28
Christian T F, Rettmann D W, Aletras A H. et al .
Absolute Myocardial Perfusion in Canines Measured by Using Dual-Bolus First-Pass MR
Imaging.
Radiology.
2004;
232
677-684
MissingFormLabel
- 29
Köstler H, Ritter C, Lipp M. et al .
Prebolus Quantitative MR Heart Perfusion Imaging.
Magn Reson Med.
2004;
52
296-299
MissingFormLabel
- 30
Hsu L J, Rhoads K L, Holly J E. et al .
Quantitative Myocardial Perfusion Analysis with a Dual-Bolus Contrast-Enhanced First-Pass
MRI Technique in Humans.
J Magn Reson Imaging.
2006;
23
315-322
MissingFormLabel
- 31
Ritter C, Brackertz A, Sandstede J. et al .
Absolute quantification of myocardial perfusion at rest and under adenosine stress.
Magn Reson Med.
2006;
56
844-849
MissingFormLabel
- 32
Köstler H, Ritter C, Reiss-Zimmermann M. et al .
Correction for Partial Volume Errors in MR Heart Perfusion Imaging.
Magn Reson Med.
2004;
51
848-852
MissingFormLabel
- 33
Köstler H, Ritter C, Trumpp M. et al .
Comparison of the Fermi function and the exponential function as model functions for
deconvolution in quantitative heart perfusion imaging.
MAGMA.
2004;
16
p104
MissingFormLabel
- 34
Jerosch-Herold M, Wilke N, Stillman A E.
Magnetic resonance quantification of myocardial perfusion reserve with a Fermi function
model for constrained deconvolution.
Med Phys.
1998;
25
73-84
MissingFormLabel
- 35
Zierler K L.
Equations for Measuring Blood Flow by External Monitoring of Radioisotopes.
Circ Res.
1965;
16
309-321
MissingFormLabel
- 36
Jerosch-Herold M, Swingen C, Seethamraju R T.
Myocardial blood flow quantification with MRI by model-independent deconvolution.
Med Phys.
2002;
29
886-897
MissingFormLabel
- 37
Rimoldi O, Schäfers K, Boellaard R. et al .
Quantification of Subendocardial and Subepicardial Blood Flow Using 15O-Labeled Water
and PET: Experimental Validation.
The J of Nuc Med.
2006;
47
163-172
MissingFormLabel
- 38
Sandstede J, Ritter C, Köstler H.
Vergleich von Gd-DTPA, Gd-BOPTA und Gadobutrol zur Bestimmung der myokardialen Perfusionsreserve
in Präbolus-Technik.
Fortschr Röntgenstr.
2004;
176
190
MissingFormLabel
- 39
Canet E, Douek P, Janier M. et al .
Influence of bolus volume and dose of Gadolinium chelate for first-pass myocardial
perfusion MR imaging studies.
J Magn Reson Imaging.
1995;
5
411-415
MissingFormLabel
- 40
Fukuda S, Muro T, Hozumi T. et al .
Changes in transmural distribution of myocardial perfusion assessed by quantitative
intravenous myocardial contrast echocardiography in humans.
Heart.
2002;
88
368-372
MissingFormLabel
- 41
Wada H, Yasu T, Kotsuka H. et al .
Evaluation of Transmural Perfusion by Ultra Harmonic Myocardial Contrast Echocardiography
in Reperfused Acute Myocardial Infarction.
Circulation.
2005;
69
1041-1046
MissingFormLabel
- 42
Masugata H, Lafitte S, Peters B.
Comparison real-time and intermittent triggered myocardial contrast echocardiography
for quantification coronary stenosis severity and transmural perfusion gradient.
Circulation.
2001;
104
1550-1556
MissingFormLabel
- 43
Masugata H, Cotter B, Peters B.
Assessment of coronary stenosis severity and transmural perfusion gradient by myocardial
contrast echocardiography: Comparison of gray-scale B-mode with power doppler imaging.
Circulation.
2000;
102
1472-1433
MissingFormLabel
- 44
Wilke N M, Jerosch-Herold M, Zenovich A. et al .
Magnetic resonance first pass myocardial perfusion imaging: clinical validation and
future applications.
J Magn Reson Imaging.
1999;
10
676-685
MissingFormLabel
Dr. Christian Oliver Ritter
Universität Würzburg, Institut für Röntgendiagnostik
Josef-Schneider-Straße 2, C 10
97080 Würzburg
Phone: ++49/9 31/20 13 41 30
Fax: ++49/9 31/20 13 41 31
Email: ritter@roentgen.uni-wuerzburg.de