Subscribe to RSS
DOI: 10.1055/s-2007-963492
© Georg Thieme Verlag KG Stuttgart · New York
Therapeutische Quervernetzung der Hornhaut mittels UVA und Riboflavin
Therapeutic Cross-Linking of the Cornea Using Riboflavin/UVAPublication History
Eingegangen: 3.7.2007
Angenommen: 26.7.2007
Publication Date:
10 September 2007 (online)

Zusammenfassung
Hintergrund: Die Quervernetzung der Hornhaut ist aus dem experimentellen Stadium in die Phase der klinischen Evaluierung getreten. In dieser Arbeit soll der gegenwärtige Stand des Wissens dargestellt werden. Methoden: Es wurde eine Literaturrecherche (medline) nach den Begriffen „cross-linking” und „cornea” durchgeführt. Aus den 99 Nennungen betrafen 34 das vorliegende Thema. Daneben wurden eigene Daten aus z. T. noch unveröffentlichten Studien verwendet. Ergebnisse: In der ersten Phase (bis 2003) wurden verschiedene Verfahren zur Quervernetzung auf Sicherheit und Wirksamkeit experimentell untersucht. Als bester Ansatz stellte sich die Vernetzung mittels UVA (370 nm) und dem Photomediator Riboflavin heraus, der dann in Pilotstudien klinisch untersucht wurde. Erst seit 2003 finden sich klinische Beobachtungen in der Literatur, die durchweg ein Sistieren der Progression von Keratektasien bis zu 2 Jahren nach der Quervernetzung belegen. In mehr als der Hälfte der beschriebenen Fälle findet sich sogar eine Umkehr der Progression. Auch werden bisher keine Komplikationen beschrieben. Keratozyten gehen in einer Tiefe bis zu 320 µm unter, während das Hornhautendothel unbelastet erscheint. Zwei Berichte über den Einsatz bei einschmelzenden Hornhautprozessen zeigen auf, dass die biochemische Wirkung der Quervernetzung Einschmelzprozesse stoppen kann. Schlussfolgerung: Die gegenwärtige Datenlage zeigt, dass die Quervernetzung der Hornhaut mittels UVA/Riboflavin komplikationsarm ist und ein Fortschreiten von progressiven Keratektasien in vielen Fällen verhindern kann. Für eine klinisch sinnvolle Indikations- und Kontraindikationsliste, aber auch für die Abschätzung der tatsächlichen Wirksamkeit reichen die zurzeit vorliegenden Daten nicht aus. Multizentrische prospektive Studien sind dringend angeraten.
Abstract
Background: The method of cross-linking of the cornea using riboflavin and ultraviolet light (UV) has recently entered the phase of clinical evaluation. The purpose of this paper is to review the current knowledge about corneal cross-linking. Methods: A literature research (medline) using the key words “cross-linking” and “cornea” revealed 99 citations. Thirty-four of the 99 articles dealt with the topic and were used for this review. Some of our own as yet unpublished data were also included. Results: In a first phase (until 2003) different methods of cross-linking were experimentally compared regarding efficacy and safety. As the most promising compromise the use of UVA (370 nm) and riboflavin as a photomediator was tested in pilot studies on human eyes with progressive keratoconus. In 2003, the first results of such pilot studies were published. Surprisingly, not only a halt in progression was found but in more than half of the eyes treated a regression towards a more regular cornea took place. So far, no complications have been reported. Keratocytes are killed up to 320 microns deep in the stroma and the endothelium appears unaffected. Nine cases of therapy-refractory corneal melting were treated by means of UVA/riboflavin cross-linking and in 8 of the 9 cases the melting process was stopped. Conclusions: In the current situation, we can state only that UVA/riboflavin cross-linking of the keratoconus cornea leads in the majority of the cases to a halt of the progression and complications seem to be rare. There are not yet enough data available to establish a list of indications and contraindications. A potential clinical acceptance of the procedure requires the results of prospective controlled studies that are currently underway.
Schlüsselwörter
Kornea - Pathologie - Refraktive Chirurgie
Key words
cornea - pathology - refractive surgery
Literatur
- 1
Alio J L, Shabayek M H, Artola A.
Intracorneal ring segments for keratoconus correction: lomg-term follow-up.
J Cataract Refract Surg.
2006;
32
978-985
MissingFormLabel
- 2
Andreassen T T, Simonsen A H, Oxlund H.
Biomechanical properties of keratoconus and normal corneas.
Exp Eye Res.
1980;
31
435-441
MissingFormLabel
- 3
Araie M, Maurice D.
The rate of diffusion of fluorophores through the corneal epithelium and stroma.
Exp Eye Res.
1987;
44
73-87
MissingFormLabel
- 4
Avery N C, Bailey A J.
The effects of the Maillard reaction on the physical properties and cell interactions
of collagen.
Pathol Biol.
2006;
54
387-395
MissingFormLabel
- 5
Bailey A J.
Structure, function and ageing of the collagens of the eye.
Eye.
1987;
1
175-183
MissingFormLabel
- 6
Bailey A J, Paul R G, Knott L.
Mechanisms of maturation and ageing of collagen.
Mech Ageing Dev.
1998;
106
1-56
MissingFormLabel
- 7
Besaratinia A, Kim S I, Bates S E. et al .
Riboflavin activated by ultraviolet A 1 irradiation induces oxidative DNA damage-mediated
mutations inhibited by vitamin C.
Proc Natl Acad Sci USA.
2007;
104
5953-5958
MissingFormLabel
- 8 Billmeyer F. Textbook of Polymer Science. NY; John Wiley and Sons, Inc 1971 2nd ed
MissingFormLabel
- 9
Caporossi A, Baiocchi S, Mazzotta C. et al .
Parasurgical therapy for keratoconus by riboflavin-ultraviolet type A induced cross-linking
of corneal collagen.
J Cataract Refract Surg.
2006;
32
837-845
MissingFormLabel
- 10
Chan C C, Sharma M, Wachler B S.
Effect of inferior-segment Intacs with and without C 3-R on keratoconus.
J Cataract Refract Surg.
2007;
33
75-80
MissingFormLabel
- 11 Cole D F. Ocular fluids. Davson H The eye London; Academic Press 1984: 352-354
MissingFormLabel
- 12
Colin J, Cochener B, Savary G. et al .
Correcting keratoconus with intracorneal rings.
J Cataract Refract Surg.
2000;
26
1117-1122
MissingFormLabel
- 13
Colella C M, Bogani P, Agati G. et al .
Genetic effects of UV-B: mutagenicity of 308 nm light in Chinese hamster V 79 cells.
Photochem Photobiol.
1986;
43
437-442
MissingFormLabel
- 14
Daxer A, Misof K, Grabner B. et al .
Collagen fibrils in the human corneal stroma: structure and aging.
Invest Ophthalmol Vis Sci.
1998;
39
644-648
MissingFormLabel
- 15
Edmund C.
Corneal elasticity and ocular rigidity in normal and keratoconic eyes.
Acta Ophthalmol.
1988;
66
134-140
MissingFormLabel
- 16
Elsheikh A, Wang D, Brown M. et al .
Assessment of corneal biomechanical properties and their variation with age.
Curr Eye Res.
2007;
32
11-19
MissingFormLabel
- 17
Erie J C, Patel S V, McLaren J W. et al .
Corneal keratocyte deficits after photorefractive keratectomy and laser in situ keratomileusis.
Am J Ophthalmol.
2006;
141
799-809
MissingFormLabel
- 18
Ersek R A, Derlerm A G.
Processed irradiated bovine cartilage for nasal reconstruction.
Annals Plastic Surgery.
1988;
20
540-546
MissingFormLabel
- 19
Hafezi F, Kanellopoulos J, Wiltfang R. et al .
Corneal collagen cross-linking with riboflavin/UVA for the treatment of induced keratectasia
after laser in situ keratomileusis.
J Cataract Refract Surg 2007.
(zur Publikation angenommen);
MissingFormLabel
- 20
Helena M C, Baerveldt F, Kim W J. et al .
Keratocyte apoptosis after corneal surgery.
Invest Ophthalmol Vis Sci.
1998;
39
276-283
MissingFormLabel
- 21
Iseli H P, Koller T, Hafezi F. et al .
Corneal shape factors after crosslinking detected by Scheimpflug imaging.
Cornea.
2007 (zur Publikation angenommen);
MissingFormLabel
- 22
Iseli H P, Thiel M, Hafezi F. et al .
UV Cross linking in cases of infectious keratitis associated with corneal melting.
Cornea.
2007 (zur Publikation eingereicht);
MissingFormLabel
- 23
Jamieson W R.
Advanced technologies for cardiac valvular replacement, transcatheter innovations
and reconstructive surgery.
Surg Technol Int.
2006;
15
149-187
MissingFormLabel
- 24
Kaldawy R M, Wagner J, Ching S. et al .
Evidence of apoptotic cell death in keratoconus.
Cornea.
2002;
21
206-209
MissingFormLabel
- 25
Kohlhaas M, Spoerl E, Speck A. et al .
Eine neue Behandlung der Keratektasie nach LASIK durch Kollagenvernetzung mit Riboflavin/UVA-Licht.
Klin Monatsbl Augenheilkd.
2005;
222
430-436
MissingFormLabel
- 26
Kuo I C, Broman A, Pirouzmanesh A. et al .
Is there an association between diabetes and keratoconus?.
Ophthalmology.
2006;
113
184-190
MissingFormLabel
- 27
Malik N S, Moss S J, Ahmed N. et al .
Aging of the human corneal stroma: structural and biochemical changes.
Biophys Acta.
1992;
1138
222-228
MissingFormLabel
- 28
Mazzotta C, Balestrazzi A, Traversi C. et al .
Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal
collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal
microscopy in humans.
Cornea.
2007;
26
390-397
MissingFormLabel
- 29
McElvanney A M.
Doxycycline in the management of pseudomonas corneal melting: two case reports and
a review of the literature.
Eye Contact Lens.
2003;
29
258-261
MissingFormLabel
- 30
Pettenati M J, Sweatt A J, Lantz P. et al .
The human cornea has a high incidence of acquired chromosome abnormalities.
Hum Genet.
1997;
101
26-29
MissingFormLabel
- 31
Pitts D G, Cullen A P, Hacker P D.
Ocular effects of ultraviolet radiation from 295 - 365 nm.
Invest Ophthalmol Vis Sci.
1977;
16
932-939
MissingFormLabel
- 32
Pleyer U, Bergmann L, Krause A. et al .
Autoimmunerkrankungen der peripheren Hornhaut. Immunpathologie, Klinik und Therapie.
Klin Monatsbl Augenheilkd.
1996;
208
73-81
MissingFormLabel
- 33
Radner W, Zehetmayer M, Skorpik C. et al .
Altered organization of collagen in the apex of keratoconus corneas.
Ophthalmic Res.
1997;
30
327-332
MissingFormLabel
- 34
Rehany U, Lahav M, Shoshan S.
Collagenolytic activity in keratoconus.
Ann Ophthalmol.
1982;
14
751-754
MissingFormLabel
- 35
Reiser K M.
Nonenzymatic glycation of collagen in aging and diabetes.
Proc Soc Exp Biol Med.
1991;
16
17-26
MissingFormLabel
- 36
Remé C, Reinboth J, Clausen M. et al .
Light damage revisited: converging evidence, diverging views?.
Graefes Arch Clin Exp Ophthalmol.
1996;
234
2-11
MissingFormLabel
- 37
Ringvold A, Davanger M, Olsen E G.
Changes of the corneal endothelium after ultraviolet radiation.
Acta Ophthalmol.
1982;
60
41-53
MissingFormLabel
- 38
Rotter N, Aigner J, Naumann A. et al .
Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer
scaffolds for tissue engineering of human septal cartilage.
J Biomed Mater Res.
1998;
42
347-356
MissingFormLabel
- 39 Sachs L. Angewandte Statistik. Berlin; Springer-Verlag 1992 7. Aufl: 439
MissingFormLabel
- 40
Schnitzler E, Spoerl E, Seiler T.
Bestrahlung der Hornhaut mit UV-Licht und Riboflavingabe als neuer Behandlungsversuch
bei einschmelzenden Hornhautprozessen.
Klin Monatsbl Augenheilkd.
2000;
217
190-193
MissingFormLabel
- 41 Scranton A B, Bowman C N, Peiffer R W. Photopolymerization: fundamentals and applications. ACS symposium series 673 Washington, DC; American Chemical Society 1997
MissingFormLabel
- 42
Seiler T, Huhle S, Spoerl E. et al .
Manifest Diabetes and keratoconus: a retrospective case-control study.
Graefe’s Arch Clin Exp Ophthalmol.
2000;
238
822-825
MissingFormLabel
- 43
Sliney D H.
Dosimetry for ultraviolet radiation exposure of the eye. Ultraviolet radiation hazards.
SPIE.
1994;
2134B
2-11
MissingFormLabel
- 44
Spoerl E, Huhle M, Kaspar M. et al .
Erhöhung der Festigkeit der Hornhaut durch Vernetzung.
Ophthalmologe.
1997;
94
902-906
MissingFormLabel
- 45
Spoerl E, Seiler T.
Techniques for stiffening the cornea.
J Refract Surg.
1998;
15
711-713
MissingFormLabel
- 46
Spoerl E, Schreiber J, Hellmund K. et al .
Untersuchungen zur Verfestigung der Hornhaut am Kaninchen.
Ophthalmologe.
2000;
97
203-206
MissingFormLabel
- 47
Spoerl E, Wollensak G, Seiler T.
Increased resistance of crosslinked cornea against enzymatic digestion.
Current Eye Research.
2004;
29
35-40
MissingFormLabel
- 48
Spoerl E, Mrochen M, Sliney D. et al .
Safety of UVA-riboflavin cross-linking of the cornea.
Cornea.
2007;
26
385-389
MissingFormLabel
- 49
Wollensak G, Spoerl E, Seiler T.
Stress-strain measurement of human and porcine corneas after riboflavin-UVA-induced
cross-linking.
J Cataract Refract Surg.
2003;
29
1780-1785
MissingFormLabel
- 50
Wollensak G, Spoerl E, Reber F. et al .
Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro.
Ophthalmic Res.
2003;
35
324-328
MissingFormLabel
- 51
Wollensak G, Spoerl E, Wilsch M. et al .
Endothelial cell damage after riboflavin-UVA treatment in the rabbit.
J Cataract Refract Surg.
2003;
29
1786-1790
MissingFormLabel
- 52
Wollensak G, Spoerl E, Seiler T.
Behandlung von Keratokonus durch Kollagenvernetzung.
Ophthalmologe.
2003;
100
44-49
MissingFormLabel
- 53
Wollensak G, Spoerl E, Seiler T.
Riboflavin/Ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus.
Am J Ophthalmol.
2003;
135
620-627
MissingFormLabel
- 54
Wollensak G, Wilsch M, Spoerl E. et al .
Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA.
Cornea.
2004;
23
503-507
MissingFormLabel
- 55
Wollensak G, Spoerl E, Wilsch M. et al .
Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment.
Cornea.
2004;
23
43-49
MissingFormLabel
- 56
Wollensak G, Spoerl E, Reber F. et al .
Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro.
Eye.
2004;
18
718-722
MissingFormLabel
- 57
Wollensak G, Aurich H, Pham D T. et al .
Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A.
J Cataract Refract Surg.
2007;
33
516-21
MissingFormLabel
Prof. Theo Seiler
Augenarzt, IROC
Stockerstrasse 37
8002 Zürich
Phone: ++ 41/43/4 88 38 00
Fax: ++ 41/43/4 88 38 09
Email: info@iroc.ch