Int J Sports Med 2007; 28(8): 691-696
DOI: 10.1055/s-2007-964864
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

Postoperative Programmed Muscle Tension Augmented Osteotendinous Junction Repair

W. Wang1 , H. H. Chen2 , X. H. Yang2 , G. Xu2 , K. M. Chan1 , L. Qin1
  • 1Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
  • 2Guang Zhou Research Institute of Traumatology, Guang Zhou Red Cross Hospital, Guang Zhou, China
Further Information

Publication History

accepted after revision May 5, 2006

Publication Date:
11 May 2007 (online)

Abstract

The postoperative programmed muscle tension induced by functional electrical stimulation (FES) was evaluated for its potential efficacy on acceleration of osteotendinous junction healing using an established partial patellectomy model in rabbits. After immobilization of the operated knee for 6 weeks, daily FES was applied to quadriceps muscles for 30 minutes per day and 5 days per week for 6 weeks in the treatment group and compared with the non-treatment control group at postoperative week 12 and 18, radiologically, histologically and biomechanically. Results showed that FES-induced muscle tension significantly increased new bone formation, bone mineral density, and fibrocartilage zone restoration in the osteotendinous healing interface. The failure load and ultimate strength of the repairing osteotendinous complex were also improved significantly with healing over time. In conclusion, the postoperative programmed FES-induced muscle tension was favorable for acceleration of osteotendinous junction repair and therefore recommended for clinical trails in orthopedic sports medicine and rehabilitation.

References

  • 1 Appell H J. Skeletal muscle atrophy during immobilization.  Int J Sports Med. 1986;  7 1-5
  • 2 Arvidsson I, Arvidsson H, Eriksson E, Jansson E. Prevention of quadriceps wasting after immobilization: an evaluation of the effect of electrical stimulation.  Orthop. 1986;  9 1519-1528
  • 3 Belanger M, Stein R B, Wheeler G D, Gordon T, Leduc B. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?.  Arch Phys Med Rehabil. 2000;  81 1090-1098
  • 4 Benjamin M, Ralphs J R. Fibrocartilage in tendon and ligaments: An adaptation to compressive load.  J Anat. 1998;  193 481-494
  • 5 Buckwalter J A. Effects of early motion on healing of musculoskeletal tissues.  Hand Clin. 1996;  12 13-24
  • 6 Buckwalter J A. Activity vs. rest in the treatment of bone, soft tissue and joint injuries.  Iowa Orthop J. 1995;  15 29-42
  • 7 Galatz L M, Ball C M, Teefey S A, Middleton W D, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears.  J Bone Joint Surg. 2004;  86 A 219-224
  • 8 Gao J, Messner K. Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint.  J Anat. 1996;  188 367-373
  • 9 Grundnes O, Reikeras O. Mechanical effects of function on bone healing, non-weight bearing and exercise in osteotomized rats.  Acta Orthop Scand. 1991;  62 163-165
  • 10 Hung L K, Lee S Y, Leung K S, Chan K M, Nicoll L A. Partial patellectomy for patellar fracture: tension band wiring and early mobilization.  J Orthop Trauma. 1993;  7 252-260
  • 11 Leung K S, Qin L, Leung M CT, Fu L LK, Chan C W. Decrease in proteoglycans content of the remaining patellar articular cartilage after partial patellectomy in rabbits.  J Clin Exp Rheumatol. 1999;  17 419-422
  • 12 Leung K S, Qin L, Fu L K, Chan C W. A comparative study of bone to bone repair and bone to tendon healing in patella-patellar tendon complex in rabbits.  Clin Biomech. 2002;  17 594-602
  • 13 Liu S H, Panossian V, Al-Shaikh R, Tomin E, Shepherd E, Finerman G A, Lane J M. Morphology and matrix composition during early tendon to bone healing.  Clin Orthop Relat Res. 1997;  339 253-260
  • 14 Matthews L S, Sonstegard D A, Henke J A. Load bearing characteristics of the patellofemoral joint.  Acta Orthop Scand. 1977;  48 511-516
  • 15 Matyas J R, Anton M G, Shrive N G, Frank C B. Stress governs tissue phenotype at the femoral insertion of the rabbit MCL.  J Biomech. 1995;  28 147-157
  • 16 Murrell G A, Jang D, Deng X H, Hannafin J A, Warren R F. Effects of exercise on Achilles tendon healing in a rat model.  Foot Ankle Int. 1998;  19 598-603
  • 17 Nebelung W, Becker R, Urbach D, Ropke M, Roessner A. Histological findings of tendon-bone healing following anterior cruciate ligament reconstruction with hamstring grafts.  Arch Orthop Trauma Surg. 2003;  123 158-163
  • 18 Nelson F R, Brighton C T, Ryaby J, Simon B J, Nielson J H. Use of physical forces in bone healing.  J Am Acad Orthop Surg. 2003;  11 344-354
  • 19 Qin L, Appell H J, Chan K M, Maffulli N. Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbits.  Arch Phys Med Rehabil. 1997;  78 512-517
  • 20 Qin L, Leung K S, Chan C W, Fu L K, Rosier R N. Enlargement of remaining patella after partial patellectomy in rabbits.  Med Sci Sports Exer. 1999;  31 502-506
  • 21 Qin L, Fok P, Lu H, Shi S, Leng Y, Leung K S. Low intensity pulsed ultrasound increases the matrix hardness of the healing tissues at bone-tendon insertion-a partial patellectomy model in rabbits.  Clin Biomech. 2006;  21 387-394
  • 22 Robbins J R, Evanko S P, Vogel K G. Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon.  Arch Biochem Biophys. 1997;  342 203-211
  • 23 Cooper R R, Misol S. Tendon and ligament insertion. A light and electron microscopic study.  J Bone Joint Surg. 1970;  52 A 1-20
  • 24 Saltzman C L, Goulet J A, Mcclellan R T. Results of treatment of displaced patellar fracture by partial patellectomy.  J Bone Joint Surg. 1990;  72 A 1279-1285
  • 25 Silva M J, Boyer M I, Ditsios K, Burns M E, Harwood F L, Amiel D, Gelberman R H. The insertion site of the canine flexor digitorum profundus tendon heals slowly following injury and suture repair.  J Orthop Res. 2002;  20 447-453
  • 26 Siu W S, Qin L, Cheung W H, Leung K S. A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography.  Bone. 2004;  35 21-26
  • 27 Thomopoulos S, Williams G R, Soslowsky L J. Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels.  J Biomech Eng. 2003;  125 106-113
  • 28 Wong N W, Qin L, Lee K M, Tai K O, Chong W S, Leung K S, Chan K M. Healing of bone tendon junction in a bone trough: A goat partial patellectomy model.  Clin Orthop Relat Res. 2003;  413 291-302
  • 29 Woo S LY. Mechanical properties of tendons and ligaments. II. The relationships of immobilization and exercise on tissue remodeling.  Bioeheology. 1982;  19 397-402
  • 30 Woo S L, Thomas M, Chan Saw S S. Contribution of biomechanics, orthopaedics and rehabilitation: the past present and future.  Surgeon. 2004;  2 125-136
  • 31 Wren T A, Beaupre G S, Carter D R. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia.  J Rehabil Res Dev. 2000;  37 135-143

Prof. Ling Qin

Department of Orthopaedics and Traumatology
The Chinese University of Hong Kong

Hong Kong

Hong Kong

Email: lingqin@cuhk.edu.hk