Int J Sports Med 2007; 28(8): 644-649
DOI: 10.1055/s-2007-964892
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

LDL Particle Size in Habitual Exercisers, Lean Sedentary Men and Abdominally Obese Sedentary Men

G. O'Donovan1 , J. McEneny2 , E. M. Kearney3 , A. Owen4 , A. M. Nevill5 , K. Woolf-May6 , S. R. Bird7
  • 1School of Sport and Education, Brunel University, London, United Kingdom
  • 2Department of Medicine, Queens University Belfast, Belfast, United Kingdom
  • 3Department of Clinical Biochemistry, Queen Elizabeth the Queen Mother Hospital, Margate, United Kingdom
  • 4Department of Cardiology, Kent and Canterbury Hospital, Canterbury, United Kingdom
  • 5School of Sport, Performing Arts and Leisure, University of Wolverhampton, Wolverhampton, United Kingdom
  • 6Department of Sport and Exercise Science, Canterbury Christ Church University College, Canterbury, United Kingdom
  • 7Centre for Population Health in the West, Melbourne University, Melbourne, Australia
Further Information

Publication History

accepted after revision July 7, 2006

Publication Date:
13 April 2007 (online)

Abstract

Habitual exercisers enjoy considerable protection from coronary heart disease (CHD). Often, however, only modest differences in traditional CHD risk factors are apparent between habitual exercisers and their sedentary counterparts. For this reason, there is increasing interest in novel predictors of CHD, such as a preponderance of small, dense low-density lipoprotein (LDL) particles. Polyacrylamide gel electrophoresis was used to separate lipoprotein subfractions in 32 lean exercisers, 36 lean sedentary men and 21 obese sedentary men aged 30 - 45 years. Well-validated equations were used to determine LDL concentration and peak particle diameter. Waist girth was used to identify lean (< 100 cm) and obese (≥ 100 cm) individuals. LDL concentration was lower in lean exercisers than in lean sedentary men (2.64 ± 0.44 vs. 3.76 ± 0.79 mmol · l-1, p < 0.001), suggesting that habitual exercise influences this risk factor. In contrast, there were no significant differences in LDL peak particle diameter between lean exercisers, lean sedentary men and obese sedentary men (27.92 ± 0.67, 28.09 ± 0.62 and 27.77 ± 0.77 nm, respectively). In multiple linear regression analysis, triglyceride concentration was the only significant predictor of LDL PPD. These data suggest that habitual exercise influences LDL concentration but does not influence LDL particle size in men aged 30 - 45 years.

References

  • 1 Beard C M, Barnard R J, Robbins D C, Ordovas J M, Schaefer E J. Effects of diet and exercise on qualitative and quantitative measures of LDL and its susceptibility to oxidation.  Arterioscler Thromb Vasc Biol. 1996;  16 201-207
  • 2 Callaway C W, Chumlea W C, Bouchard C, Himes J H, Lohman T G, Martin A D, Mitchell C D, Mueller W H, Roche A F, Seedfeldt V D. Circumferences. Lohman TG, Roche AF, Martorell R Anthropometric Standardization Reference Manual. Champaign, IL; Human Kinetics 1988: 39-54
  • 3 Campos H, Blijlevens E, McNamara J R, Ordovas J M, Posner B M, Wilson P W, Castelli W P, Schaefer E J. LDL particle size distribution. Results from the Framingham Offspring Study.  Arterioscler Thromb. 1992;  12 1410-1419
  • 4 Coresh J, Kwiterovich Jr P O, Smith H H, Bachorik P S. Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women.  J Lipid Res. 1993;  34 1687-1697
  • 5 Despres J P, Lemieux I, Prud'homme D. Treatment of obesity: need to focus on high risk abdominally obese patients.  BMJ. 2001;  322 716-720
  • 6 Dormans T P, Swinkels D W, de Graaf J, Hendriks J C, Stalenhoef A F, Demacker P N. Single-spin density-gradient ultracentrifugation vs. gradient gel electrophoresis: two methods for detecting low-density-lipoprotein heterogeneity compared.  Clin Chem. 1991;  37 853-858
  • 7 Durnin J V, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years.  Br J Nutr. 1974;  32 77-97
  • 8 Durstine J L, Grandjean P W, Davis P G, Ferguson M A, Alderson N L, DuBose K D. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis.  Sports Med. 2001;  31 1033-1062
  • 9 Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada J L, Covas M I, Ordonez-Llanos J, Marrugat J. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women.  Atherosclerosis. 2003;  167 327-334
  • 10 Freedman D S, Otvos J D, Jeyarajah E J, Shalaurova I, Cupples L A, Parise H, D'Agostino R B, Wilson P W, Schaefer E J. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study.  Clin Chem. 2004;  50 1189-1200
  • 11 Friedewald W T, Levy R I, Fredrickson D S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.  Clin Chem. 1972;  18 499-502
  • 12 Halle M, Berg A, Baumstark M W, Keul J. Association of physical fitness with LDL and HDL subfractions in young healthy men.  Int J Sports Med. 1999;  20 464-469
  • 13 Halle M, Berg A, Konig D, Keul J, Baumstark M W. Differences in the concentration and composition of low-density lipoprotein subfraction particles between sedentary and trained hypercholesterolemic men.  Metabolism. 1997;  46 186-191
  • 14 Hartung G H, Foreyt J P, Mitchell R E, Vlasek I, Gotto Jr A M. Relation of diet to high-density-lipoprotein cholesterol in middle-aged marathon runners, joggers, and inactive men.  N Engl J Med. 1980;  302 357-361
  • 15 Israel R G, Sullivan M J, Marks R H, Cayton R S, Chenier T C. Relationship between cardiorespiratory fitness and lipoprotein(a) in men and women.  Med Sci Sports Exerc. 1994;  26 425-431
  • 16 Janssen I, Katzmarzyk P T, Ross R. Waist circumference and not body mass index explains obesity-related health risk.  Am J Clin Nutr. 2004;  79 379-384
  • 17 Kazumi T, Kawaguchi A, Hozumi T, Nagao M, Iwahashi M, Hayakawa M, Ishihara K, Yoshino G. Low density lipoprotein particle diameter in young, nonobese, normolipidemic Japanese men.  Atherosclerosis. 1999;  142 113-119
  • 18 Lamarche B, St-Pierre A C, Ruel I L, Cantin B, Dagenais G R, Despres J P. A prospective, population-based study of low density lipoprotein particle size as a risk factor for ischemic heart disease in men.  Can J Cardiol. 2001;  17 859-865
  • 19 Lee I M, Paffenbarger Jr R S. How much physical activiry is optimal for health? Methodological considerations.  Res Q Exerc Sport. 1996;  67 206-208
  • 20 Lee I M, Paffenbarger Jr R S. Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard Alumni Health Study.  Am J Epidemiol. 2000;  151 293-299
  • 21 Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Després J P. A single threshold value of waist girth identifies normal-weight and overweight subjects with excess visceral adipose tissue.  Am J Clin Nutr. 1996;  64 685-693
  • 22 Mensink G B, Heerstrass D W, Neppelenbroek S E, Schuit A J, Bellach B M. Intensity, duration, and frequency of physical activity and coronary risk factors.  Med Sci Sports Exerc. 1997;  29 1192-1198
  • 23 Morris J N, Everitt M G, Pollard R, Chave S P, Semmence A M. Vigorous exercise in leisure-time: protection against coronary heart disease.  Lancet. 1980;  2 1207-1210
  • 24 National Cholesterol Education Program .Third report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. NIH publication No. 02 - 5215. Bethesda, MD; National Heart, Lung and Blood Institute 2002
  • 25 O'Donovan G, Owen A, Kearney E M, Jones D W, Nevill A M, Woolf-May K, Bird S R. Cardiovascular disease risk factors in habitual exercisers, lean sedentary men and abdominally obese sedentary men.  Int J Obes Relat Metab Disord. 2005;  29 1063-1069
  • 26 Office for National Statistics .The National Statistics Socio-Economic Classification User Manual. London; The Stationery Office 2002
  • 27 Rainwater D L. Lipoprotein correlates of LDL particle size.  Atherosclerosis. 2000;  148 151-158
  • 28 Rajman I, Maxwell S, Cramb R, Kendall M. Particle size: the key to the atherogenic lipoprotein?.  QJM. 1994;  87 709-720
  • 29 Sallis J F, Haskell W L, Wood P D, Fortmann S P, Rogers T, Blair S N, Paffenbarger Jr R S. Physical activity assessment methodology in the Five-City Project.  Am J Epidemiol. 1985;  121 91-106
  • 30 Sanchez-Quesada J L, Ortega H, Payes-Romero A, Serrat-Serrat J, Gonzalez-Sastre F, Lasuncion M A, Ordonez-Llanos J. LDL from aerobically-trained subjects shows higher resistance to oxidative modification than LDL from sedentary subjects.  Atherosclerosis. 1997;  132 207-213
  • 31 Shvartz E, Reibold R C. Aerobic fitness norms for males and females aged 6 - 75 years: a review.  Aviat Space Environ Med. 1990;  61 3-11
  • 32 Stampfer M J, Krauss R M, Ma J, Blanche P J, Holl L G, Sacks F M, Hennekens C H. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction.  JAMA. 1996;  276 882-888
  • 33 Tanasescu M, Leitzmann M F, Rimm E B, Willett W C, Stampfer M J, Hu F B. Exercise type and intensity in relation to coronary heart disease in men.  JAMA. 2002;  288 1994-2000
  • 34 Tchernof A, Lamarche B, Prud'Homme D, Nadeau A, Moorjani S, Labrie F, Lupien P J, Despres J P. The dense LDL phenotype. Association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men.  Diabetes Care. 1996;  19 629-637
  • 35 Varady K A, St-Pierre A C, Lamarche B, Jones P J. Effect of plant sterols and endurance training on LDL particle size and distribution in previously sedentary hypercholesterolemic adults.  Eur J Clin Nutr. 2005;  59 518-525
  • 36 Westhuyzen J, Graham S D, Rasiah R L, Saltissi D. Simplified sizing of low-density lipoprotein using polyacrylamide gradient gel electrophoresis of plasma.  Eur J Clin Chem Clin Biochem. 1997;  35 17-19
  • 37 Williams P T, Krauss R M, Wood P D, Lindgren F T, Giotas C, Vranizan K M. Lipoprotein subfractions of runners and sedentary men.  Metabolism. 1986;  35 45-52
  • 38 Williams P T, Krauss R M, Vranizan K M, Albers J J, Terry R B, Wood P D. Effects of exercise-induced weight loss on low density lipoprotein subfractions in healthy men.  Arteriosclerosis. 1989;  9 623-632
  • 39 Williams P T, Krauss R M, Vranizan K M, Wood P D. Changes in lipoprotein subfractions during diet-induced and exercise-induced weight loss in moderately overweight men.  Circulation. 1990;  81 1293-1304
  • 40 Yataco A R, Busby-Whitehead J, Drinkwater D T, Katzel L I. Relationship of body composition and cardiovascular fitness to lipoprotein lipid profiles in master athletes and sedentary men.  Aging (Milano). 1997;  9 88-94
  • 41 Ziogas G G, Thomas T R, Harris W S. Exercise training, postprandial hypertriglyceridemia, and LDL subfraction distribution.  Med Sci Sports Exerc. 1997;  29 986-991

PhD Gary O'Donovan

Centre for Sports Medicine and Human Performance
Brunel University

Uxbridge

Middlesex UB8 3PH

United Kingdom

Phone: + 44 18 95 27 40 00

Fax: + 44 18 95 26 97 69

Email: gary.odonovan@brunel.ac.uk