Abstract
Plant roots interact with a wide variety of rhizospheric microorganisms, including bacteria and the symbiontic arbuscular mycorrhizal (AM) fungi. The mycorrhizal symbiosis represents a series of complex feedbacks between plant and fungus regulated by their physiology and nutrition. Despite the widespread distribution and ecological significance of AM symbiosis, little is known about the potential of AM fungi to affect plant VOC metabolism. The purpose of this study was to investigate whether colonization of plant roots by AM fungi and associated soil microorganisms affects VOC emission and content of Artemisia annua L. plants (Asteraceae). Two inoculum types were evaluated: one consisted of only an arbuscular mycorrhizal (AM) fungus species (Glomus spp.), and the other was a mixture of different Glomus species and associated soil bacteria. Inoculated plants were compared with non-inoculated plants and with plants supplemented with extra phosphorus (P) to obtain plants of the same size as mycorrhizal plants, thus excluding potentially-confounding mycorrhizal effects on shoot growth. VOC emissions of Artemisia annua plants were analyzed by leaf cuvette sampling followed by off-line measurements with pre-concentration and gas chromatography mass spectrometry (GC‐MS). Measurements of CO2 and H2 O exchanges were conducted simultaneously. Several volatile monoterpenes were identified and characterized from leaf emissions of Artemisia annua L. by GC‐MS analysis. The main components identified belong to different monoterpene structures: α-pinene, β-pinene, camphor, 1,8-cineole, limonene, and artemisia ketone. A good correlation between monoterpene leaf concentration and leaf emission was found. Leaf extracts included also several sesquiterpenes. Total terpene content and emission was not affected by AM inoculation with or without bacteria, while emission of limonene and artemisia ketone was stimulated by this treatment. No differences were found among treatments for single monoterpene content, while accumulation of specific sesquiterpenes in leaves was altered in mycorrhizal plants compared to control plants. Growth conditions seemed to have mainly contributed to the outcome of the symbiosis and influenced the magnitude of the plant response. These results highlight the importance of considering the below-ground interaction between plant and soil for estimating VOC emission rates and their ecological role at multitrophic levels.
Key words
Artemisia
- arbuscular mycorrhiza - bacteria - terpene - emission - content - phosphorus.
References
1
Adam K. P., Thiel R., Zapp J..
Incorporation of 1-[1-13 C]deoxy-D-xylulose in chamomile sesquiterpenes.
Archives of Biochemistry and Biophysics.
(1999);
369
127-132
2
Ahmad A., Misra L. N..
Terpenoids from Artemisia annua and constituents of its essential oil.
Phytochemistry.
(1994);
37
183-186
3
Ahmadi L., Mirza M., Shahmir F..
The volatile constituents of Artemisia marschaliana Sprengel and its secretory elements.
Flavour and Fragrance Journal.
(2002);
17
141-143
4
Akiyama K., Hayashi H..
Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots.
Bioscience, Biotechnology and Biochemistry.
(2002);
66
762-769
5
Alonso-Amelot M. E., Perez-Mena M., Calcagno M. P., Jaimes-Espinoza R., Castello U..
Ontogenic variation of biologically active metabolites of Pteridium aquilinum (L. Kuhn), pterosins A and B, and ptaquiloside in a bracken population of the tropical Andes.
Journal of Chemical Ecology.
(1992);
18
1405-1420
6
Andrade G., Linderman R. G., Bethlenfalvay G. J..
Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae .
Plant and Soil.
(1998);
202
79-87
7
Arey J., Crowley D. E., Crowley M., Resketo M..
Hydrocarbon emissions from plants in California's South Coast Air Basin.
Atmospheric Environment.
(1995);
29
2977-2988
8
Arimura G., Huber D. P., Bohlmann J..
Forest tent caterpillars (Malcosoma disstria) induce local and systemic diurnal emissions of terpenoids volatiles in hybrid poplar (Populus trichocarpa × deltoides) : cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1.
The Plant Journal.
(2004);
37
603-661
9
Augé R. M..
Water relations, drought and VA mycorrhizal symbioses.
Mycorrhiza.
(2001);
11
3-42
10
Bago B., Pfeffer P. E., Shachar-Hill Y..
Carbon metabolism and transport in arbuscular mycorrhizas.
Plant Physiology.
(2000);
124
949-957
11 Barea J. M., Jeffries P.. Arbuscular mycorrhizas in sustainable soil plant systems. Varma, A. and Hock, B., eds. Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Berlin; Springer-Verlag (1995): 521-560
12
Barney J. N., Hay A. G., Weston L. A..
Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris) .
Journal of Chemical Ecology.
(2005);
31
247-265
13
Bertea C. M., Voster A., Verstappen F. W. A., Maffei M., Beekwilder J., Bouwmeester H. J..
Isoprenoid biosynthesis in Artemisia annua : cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library.
Archives of Biochemistry and Biophysics.
(2006);
448
3-12
14
Bethlenfalvay G. J., Franson R. L., Brown M. S., Mihara K. L..
The Glycine – Glomus – Bradyrhizobium s ymbiosis. IX. Nutritional, morphological and physiological responses of nodulated soybean to geographic isolates of the mycorrhizal fungus Glomus mosseae .
Physiologia Plantarum.
(1989);
76
226-232
15
Bezemer T. M., van Dam N. M..
Linking aboveground and belowground interactions via induced plant defenses.
Trends in Ecology and Evolution.
(2005);
20
617-624
16
Black K. G., Mitchell D. T., Osborne B. A..
Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber.
Plant, Cell and Environment.
(2000);
23
797-809
17
Blanke V., Renker C., Wagner M., Füllner K., Held M., Kuhn A. J., Buscot F..
Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site.
New Phytologist.
(2005);
166
981-992
18
Bos R., Stojanova A. S., Woerdenbag H. J., Koulman A., Quax W. J..
Volatile components of the aerial parts of Artemisia pontica L. grown in Bulgaria.
Flavour and Fragrance Journal.
(2005);
20
145-148
19
Bryant J. P., Chapin III. F. S., Klein D. R..
Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory.
Oikos.
(1983);
40
357-368
20
Cai Y., Jia J. W., Crock J., Lin Z. X., Chen X. Y., Croteau R..
A cDNA clone for beta-caryophyllene synthase from Artemisia annua .
Phytochemistry.
(2002);
61
523-529
21
Chou J. C., Mullin C. A..
Phenologic and tissue distribution of sesquiterpenes lactones in cultivated sunflowers (Helianthus annuus L.).
Journal of Plant Physiology.
(1993);
142
657-663
22
Danneberg G., Latus C., Zimmer W., Hundeshagen B., Schneider-Poetsch H., Bothe H..
Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.).
Journal of Plant Physiology.
(1992);
141
33-39
23
Dethier M., Sakubu S., Ciza A., Cordier Y., Menut C., Lamaty G..
Aromatic plants of Central Africa. XXVIII. Influence of cultural treatment and harvest time on vetiver oil quality in Burundi.
Journal of Essential Oil Research.
(1997);
9
447-451
24
Dicke M., Agrawal A. A., Bruin J..
Plants talk, but are they deaf?.
Trends in Plant Science.
(2003);
8
403-405
25
Duke M. V., Paul R. N., Elsohl H. N., Sturtz G., Duke S. O..
Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L.
International Journal of Plant Sciences.
(1994);
155
365-372
26
Eissenstat D. M., Graham J. H., Syversten J. P., Drouillard D. L..
Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status.
Annals of Botany.
(1993);
71
1-10
27
Flesch V., Jacques M., Cosson L., Teng B. P., Petiard V., Balz J. P..
Relative importance of growth and light level on terpene content of Ginkgo biloba .
Phytochemistry.
(1992);
31
1941-1945
28
Figueira G. M..
Mineral nutrition, production and artemisinin content in Artemisia annua L.
Acta Horticulture.
(1996);
426
753-777
29
Foyer C., Spencer C..
The relationship between the phosphate and photosynthesis in leaves.
Planta.
(1986);
167
369-375
30
Fredeen A. L., Terry N..
Influence of vesicular-arbuscular mycorrhizal infection and soil phosphorus level on growth and carbon metabolism of soybean.
Canadian Journal of Botany.
(1988);
66
2311-2316
31
Frey-Klett P., Garbaye J..
Mycorrhizal helper bacteria: a promising model for the genomic analysis of fungal bacteria interactions.
New Phytologist.
(2005);
168
4-8
32
Gange A. C., West H. M..
Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L.
New Phytologist.
(1994);
128
79-87
33
Garbaye J..
Helper bacteria: a new dimension to the mycorrhizal symbiosis.
New Phytologist.
(1994);
128
197-210
34
Gianinazzi-Pearson V..
Plant cell response to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis.
Plant Cell.
(1996);
8
1871-1883
35
Guerrieri E., Lingua G., Digilio M. C., Massa N., Berta G..
Do interactions between plant roots and the rhizosphere affect parasitoid behaviour?.
Ecological Entomology.
(2004);
29
753-756
36
Guenther A., Greenberg J., Harley P., Helmig D., Klinger L., Vierling L., Zimmermann P., Geron C..
Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands.
Tree Physiology.
(1996);
16
17-24
37
Hans J., Hause B., Strack D., Walter M. H..
Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize.
Plant Physiology.
(2004);
134
614-624
38
Haraguchi H., Matsuda R., Hashimoto K..
High-performance liquid chromatographic determination of sesquiterpene dialdehydes and antifungal activity from Polygonum hydropiper.
.
Journal of Agricultural and Food Chemistry.
(1993);
41
5-7
95 Harrewijn P., van Osten A. M., Piron P. G. M.. Natural Terpenoids as Messengers. A Multidisciplinary Study of their Production, Biological Functions and Practical Applications. Dordrecht, Boston, London; Kluwer Academic Publishers (2001)
39
Harrier L. A., Watson C. A..
The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems.
Pest Management Science.
(2004);
60
149-157
40
Hause B., Maier W., Miersch O., Kramell R., Strack D..
Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.
Plant Physiology.
(2002);
130
1213-1220
41
Holopainen J. K..
Multiple functions of inducible plant volatiles.
Trends in Plant Science.
(2004);
9
529-533
42
Jakobsen I., Abbott L. K., Robson A. B..
External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots.
New Phytologist.
(1992);
120
371-378
43 Jakobsen I., Smith S. E., Smith F. A.. Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. van der Heijden, M. G. A. and Sanders, I. R., eds. Mycorrhizal Ecology. Berlin; Springer (2003): 75-92
44
Jerkovic I., Mastelic J., Milos M., Justeau F., Masotti V., Viano J..
Chemical variability of Artemisia vulgaris L. essential oils originated from the Mediterranean area of France and Croatia.
Flavour and Fragrance Journal.
(2003);
18
436-440
45
Jia J. W., Crock J., Lu S., Croteau R., Chen X. Y..
(3R)-Linalool synthase from Artemisia annua L.: cDNA isolation characterization, and wound induction.
Archives of Biochemistry and Biophysics.
(1999);
372
143-149
46
Kapoor R., Giri B., Mukerji K. G..
Improved growth and essential oil yield and quality in Foeniculum vulgare Mill. on mycorrhizal inoculation supplemented with P-fertilizer.
Bioresource Technology.
(2004);
93
307-311
47
Kesselmeier J., Staudt M..
Biogenic Volatile Organic Compounds (VOC): an overview on emission, physiology and ecology.
Journal of Atmospheric Chemistry.
(1999);
33
23-88
48
Khaosaad T., Vierheilig H., Nell M., Zitterl-Eglseer K., Novak J..
Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae).
Mycorrhiza.
(2006);
6
443-446
49
Klayman D. L..
Qinghaosu (Artemisinin): an antimalarial drug from China.
Science.
(1985);
228
1049-1055
50
Klingner A., Bothe H., Wray V., Marner F. J..
Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization.
Phytochemistry.
(1995);
38
53-55
51
Klironomos J. N., Ursic M., Rillig M., Allen M. F..
Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2 .
New Phytologist.
(1998);
138
599-605
94
Koide R. T..
Nutrient supply, nutrient demand and plant response to mycorrhizal infection.
New Phytologist.
(1991);
117
365-386
52
Koide R. T., Mosse B..
A history of research on arbuscular mycorrhiza.
Mycorrhiza.
(2004);
14
145-163
53
Köllner T. G., Schnee C., Gershenzon J., Degenhardt J..
The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective, multiple product enzymes.
Plant Cell.
(2004);
16
1-17
54
Krishna H., Singh S. K., Sharma R. R., Khawale R. N., Grover M., Patel V. B..
Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization.
Scientia Horticulturae.
(2005);
106
554-567
55
Kuhn U., Rottenberger S., Biesenthal T., Wolf A., Schebeske G., Ciccioli P., Kesselemeier J..
Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with functional changes in volatile organic compounds emission composition during early leaf development.
Plant, Cell and Environment.
(2004);
27
1469-1485
56
Iijima Y., Davidovich-Rikanati R., Fridman E., Gang D. R., Bar E., Lewinsohn E., Pichersky E..
The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil.
Plant Physiology.
(2004);
136
3724-3736
57
Llusià J., Peñuelas J..
Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions.
American Journal of Botany.
(2000);
87
133-140
58
Llusià J., Peñuelas J., Alessio G. A., Estiarte M..
Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four dominant species of a Mediterranean shrubland submitted to a field experimental drought and warming.
Physiologia Plantarum.
(2006);
127
632-649
59
Lu S., Xu R., Jia J. W., Pang J., Matsuda S. P. T., Chen X. Y..
Cloning and functional characterization of a β-pinene synthase from Artemisia annua that shows a circadian pattern of expression.
Plant Physiology.
(2002);
130
477-486
60
Mellon J. E., West C. A..
Diterpene biosynthesis in maize seedlings in response to fungal infection.
Plant Physiology.
(1979);
64
406-410
61
Miller R. M., Miller S. P., Jastrow J. D., Rivetta C. B..
Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii .
New Phytologist.
(2002);
155
149-162
62
Nemec S., Lund E..
Leaf volatiles of mycorrhizal and nonmycorrhizal Citrus jambhiri Lush.
Journal of Essential Oil Research.
(1990);
2
287-297
63
Niinemets Ü., Hauff K., Bertin N., Tenhunen J. D., Steinbrecher R., Seufert G..
Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species.
New Phytologist.
(2002 a);
153
243-256
64
Niinemets Ü., Seufert G., Steinbrecher R., Tenhunen J. D..
A model coupling monoterpene emissions to leaf photosynthetic characteristic in Mediterranean evergreen Quercus species.
New Phytologist.
(2002 b);
153
257-275
65
Peipp H., Maier W., Schmidt J., Wray V., Strack D..
Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots.
Phytochemistry.
(1997);
44
581-587
66
Peñuelas J., Estiarte M..
Can elevated CO2 affect secondary metabolism and ecosystem functioning?.
Trends in Ecology and Evolution.
(1998);
13
20-24
67
Peñuelas J., Llusià J..
The complexity of factors driving volatile organic compound emissions by plants.
Biologia Plantarum.
(2001);
44
481-487
68
Peñuelas J., Llusià J..
Plant VOC emissions: making use of unavoidable.
Trends in Plant Science.
(2004);
19
402-404
69
Perotto S., Bonfante P..
Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere.
Trends in Microbiology.
(1997);
12
496-501
70
Phillips J. M., Hayman D. S..
Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection.
Transactions of the British Mycological Society.
(1970);
55
158-161
71
Rapparini F., Baraldi R., Bertazza G..
Growth and carbohydrate status of Pyrus communis L. plantlets inoculated with Glomus sp.
Agronomie.
(1996);
16
653-661
72
Rapparini F., Baraldi R., Facini O..
Seasonal variation of monoterpene emission from Malus domestica and Prunus avium .
Phytochemistry.
(2001);
57
681-687
73
Requena N., Jiménez I., Toro M., Barea J. M..
Interactions between plant-growth-promoting rhizobacteria (PGPR) arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semiarid ecosystems.
New Phytologist.
(1997);
136
667-677
74
Rupasinghe H. P. V., Paliyath G., Murr D. P..
Biosynthesis of isoprenoids in higher plants.
Physiology and Molecular Biology of Plants.
(2003);
9
19-28
75
Schüßeler A., Schwarzott D., Walker C..
A new fungal phylum, the Glomeromycota: phylogeny and evolution.
Mycological Research.
(2001);
105
1413-1421
76
Smith S. E., Smith F. A., Jakobsen I..
Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake.
New Phytologist.
(2004);
162
511-524
77 Smith S. E., Read D. J.. Mycorrhizal Symbiosis. London, United Kingdom; Academic Press (1997)
78
Smith S. E., Smith F. A., Jakobsen I..
Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses.
Plant Physiology.
(2003);
133
16-20
79
Steliopoulos P., Wüst M., Adam K. P., Mosandl A..
Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis : 13 C and 2 H labeling studies.
Phytochemistry.
(2002);
60
13-20
80
Strack D., Fester T., Hause B., Schliemann W., Walter M. H..
Arbuscular mycorrhiza: biological, chemical and molecular aspects.
Journal of Chemical Ecology.
(2003);
29
1955-1979
81
Strack D., Fester T..
Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots.
New Phytologist.
(2006);
172
22-34
82
Syvertsen J. P., Graham J. H..
Influence of vesicular arbuscular mycorrhizae and leaf age on net gas exchange of citrus leaves.
Plant Physiology.
(1990);
94
1424-1428
83
Tan R. X., Zheng W. F., Tang H. Q..
Biologically active substances from the genus Artemisia .
Planta Medica.
(1998);
64
295-302
84
Tang M., Chen H., Shang H. S..
Mechanism of vesicular-arbuscular mycorrhizal fungi enhanced the resistance of poplar to canker.
Scientia Silvae Sinica.
(2000);
36
87-92
85
Tellez M. R., Canel C., Rimando A. M., Duke S. O..
Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L.
Phytochemistry.
(1999);
52
1035-1040
86
Tiwari R. J., Banafar R. N. S..
Application of nitrogen and phosphorus increases seed yield and essential oil of coriander.
Indian Cocoa, Arecanut and Spices Journal.
(1995);
19
51-55
87
Umlauf D., Zapp J., Becker H., Adam K. P..
Biosynthesis of the irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and other isoprenoids in Tanacetum vulgare L. (Asteraceae).
Phytochemistry.
(2004);
65
2463-2470
88
van Geldre E., Vergauwe A., van den Eeckhout E..
State of the art of the production of the antimalarian compound artemisinin in plants.
Plant Molecular Biology.
(1997);
33
199-209
89 Varma A., Hock B.. Mycorrhiza, Structure, Function, Molecular Biology and Biotechnology. Berlin; Springer (1995)
90
Walter M. H., Fester T., Strack D..
Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the “yellow pigment” and other apocarotenoids.
The Plant Journal.
(2000);
21
571-578
91 Winer A. M., Fitz D. R., Miller P. R.. Investigation of the role of natural hydrocarbons in photochemical smog formation in California. Contract No. AO‐056-32, prepared for the California Air Resources Board, by the Statewide Air Pollution Research Center, Riverside, California, USA. (1983)
92
Wright D. P., Scholes J. D., Read D. J..
Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L.
Plant, Cell and Environment.
(1998);
21
209-216
93
Wurst S., Dugassa-Gobena D., Langel R., Bonkowski M., Scheu S..
Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance.
New Phytologist.
(2004);
163
169-176
F. Rapparini
Biometeorology Institute, IBIMET‐CNR
Via Gobetti 101
40129 Bologna
Italy
Email: f.rapparini@ibimet.cnr.it
Guest Editor: F. Loreto