Int J Sports Med 2007; 28(10): 836-843
DOI: 10.1055/s-2007-964976
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Does Power Indicate Capacity? 30-s Wingate Anaerobic Test vs. Maximal Accumulated O2 Deficit

C. Minahan1 , M. Chia2 , O. Inbar3
  • 1School of Physiotherapy and Exercise Science, Griffith University, Gold Coast, Australia
  • 2PE and Sports Science, National Institute of Education, Nanyang Technological University, Singapore
  • 3Department of Life Sciences, Zinman College Wingate Institute, Netanya, Israel
Further Information

Publication History

accepted after revision August 13, 2006

Publication Date:
11 May 2007 (online)

Abstract

The purpose of this study was to evaluate the relationship between anaerobic power and capacity. Seven men and seven women performed a 30-s Wingate Anaerobic Test on a cycle ergometer to determine peak power, mean power, and the fatigue index. Subjects also cycled at a work rate predicted to elicit 120 % of peak oxygen uptake to exhaustion to determine the maximal accumulated O2 deficit. Peak power and the maximal accumulated O2 deficit were significantly correlated (r = 0.782, p = 0.001). However, when the absolute difference in exercise values between groups (men and women) was held constant using a partial correlation, the relationship diminished (r = 0.531, p = 0.062). In contrast, we observed a significant correlation between fatigue index and the maximal accumulated O2 deficit when controlling for gender (r = - 0.597, p = 0.024) and the relationship remained significant when values were expressed relative to active muscle mass. A higher anaerobic power does not indicate a greater anaerobic capacity. Furthermore, we suggest that the ability to maintain power output during a 30-s cycle sprint is related to anaerobic capacity.

References

  • 1 Baltzopoulos V R, Eston G, Maclaren D. A comparison of power outputs on the Wingate test and on a test using an isokinetic device.  Ergonomics. 1988;  31 1693-1699
  • 2 Bar-Or O. Pathophysiological factors which limit the exercise capacity of the sick child.  Med Sci Sports Exerc. 1986;  18 276-282
  • 3 Bulbulian R, Jeong J-W, Jeong M. Comparison of anaerobic components of the Wingate and critical power tests in males and females.  Med Sci Sports Exerc. 1996;  28 1336-1341
  • 4 Cooper S M, Baker J S, Eaton Z E, Matthews N. A simple multistage field test for the prediction of anaerobic capacity in female games players.  Br J Sports Med. 2004;  38 784-789
  • 5 Denis C, Linossier M T, Dormois D, Padilla S, Geyssant A, Lacour J R, Inbar O. Power and metabolic responses during supramaximal exercise in 100-m and 800-m runners.  Scand J Med Sci Sports. 1992;  2 62-69
  • 6 Esbjornsson M, Sylven C, Holm I, Jansson E. Fast twitch fibres may predict anaerobic performance in both females and males.  Int J Sports Med. 1993;  14 257-263
  • 7 Froese E A, Houston M E. Performance during the Wingate anaerobic test and muscle morphology in males and females.  Int J Sports Med. 1987;  8 35-39
  • 8 Granier P, Mercier B, Mercier J, Anselme F, Prefaut C. Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners.  Eur J Appl Physiol. 1995;  70 58-65
  • 9 Hill D W, Smith J C. Gender difference in anaerobic capacity: role of aerobic contribution.  Br J Sports Med. 1993;  27 45-48
  • 10 Inbar O, Ayalon A, Bar-Or O. Relationship between tests of anaerobic capacity and power.  Isr J Med Sci. 1974;  10 290
  • 11 Inbar O, Kaiser P, Tesch P. Relationship between leg muscle fiber type distribution and leg exercise performance.  Int J Sports Med. 1981;  2 154-159
  • 12 Inbar O, Bar-Or O. Anaerobic characteristics in male children and adolescents.  Med Sci Sports Exerc. 1986;  18 264-269
  • 13 Inbar O, Bar-Or O, Skinner J S. (eds) .The Wingate Anaerobic Test. Champaign, IL; Human Kinetics 1996: 381-394
  • 14 Kavanagh M, Jacobs I. Breath-by-breath oxygen consumption during performance of the Wingate test.  Can J Sport Sci. 1988;  13 91-97
  • 15 Kocak S, Karli U. Effects of high dose oral creatine supplementation on anaerobic capacity of elite wrestlers.  J Sports Med Phys Fitness. 2003;  43 488-492
  • 16 Maud P J, Shultz B B. Norms for the Wingate anaerobic test with comparison to another similar test.  Res Q Exerc Sport. 1989;  60 144-151
  • 17 Medbø J I, Mohn A C, Tabata I, Bahr R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 18 Medbø J I, Tabata I. Relative importance if aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise.  J Appl Physiol. 1989;  67 1881-1886
  • 19 Medbø J I, Burgers S. Effect of training on the anaerobic capacity.  Med Sci Sports Exerc. 1990;  22 501-507
  • 20 Medbø J I, Tabata I. Anaerobic energy release in working muscle during 30-s to 3-min exhausting bicycling.  J Appl Physiol. 1993;  75 1654-1660
  • 21 Parker D F, Carriere L, Hebestreit H, Bar-Or O. Anaerobic endurance and peak muscle power in children with spastic cerebral palsy.  Am J Disabled Child. 1992;  146 1069-1073
  • 22 Parish H, Jakeman P. The effects of menstruation upon repeated maximal sprint performance.  J Sports Sci. 1987;  1 78
  • 23 Raasch C, Zajac F, Ma B, Levine W. Muscle coordination of maximum-speed pedaling.  J Biomech. 1997;  30 595-602
  • 24 Saltin B. The physiological and biochemical basis of aerobic and anaerobic capacities in man: effect of training and range of adaptation. Mæhlum S, Nilsson S, Renström P An Update of Sports Medicine. Oslo, Norway; Proceedings from the Second Scandinavian Conference in Sports Medicine 1987: 16-59
  • 25 Scott C, Roby F, Lohman T, Bunt J. The maximally accumulated oxygen deficit as an indicator of anaerobic capacity.  Med Sci Sports Exerc. 1991;  23 618-624
  • 26 Serresse O, Lortie G, Bouchard C, Boulay M R. Estimation of the contribution of the various energy systems during maximal work of short duration.  Int J Sports Med. 1988;  9 456-460
  • 27 Weber C, Schneider D. Reliability of MAOD measured at 110 % and 120 % of peak oxygen uptake for cycling.  Med Sci Sports Exerc. 2001;  33 1056-1059
  • 28 Weber C L, Chia M, Inbar O. Gender differences in anaerobic power of the arms and legs - a scaling Issue.  Med Sci Sports Exerc. 2006;  38 129-137
  • 29 Winter E, Brookes F, Hamley E. Maximal exercise performance and lean leg volume in men and women.  J Sports Sci. 1991;  9 3-13

Dr. Clare Minahan

School of Physiotherapy and Exercise Science
Griffith University

PMB 50, Gold Coast Mail Centre

9726 Gold Coast

Australia

Phone: + 61 755 52 83 90

Fax: + 61 755 52 86 74

Email: c.minahan@griffith.edu.au