Int J Sports Med 2007; 28(12): 1059-1064
DOI: 10.1055/s-2007-965064
Genetics & Molecular Biology

© Georg Thieme Verlag KG Stuttgart · New York

Relationship between TFAM Gene Polymorphisms and Endurance Capacity in Response to Training

Z. He1 , 2 , Y. Hu2 , L. Feng1 , D. Bao2 , Y. Xi3 , L. Wen3 , A. Lucia4
  • 1Biology Center, China Institue of Sport Science, Beijing, China
  • 2Sport Biology, Beijing Sport University, Beijing, China
  • 3Sport Biology, Tianjin Institute of Physical Education, Beijing, China
  • 4Physiology, Universidad Europea De Madrid, Madrid, Spain
Further Information

Publication History

accepted after revision January 22, 2007

Publication Date:
11 May 2007 (online)

Abstract

The aim of this study was to explore whether polymorphisms in mitochondrial transcription factor A (TFAM) gene are associated with endurance capacity in a pretraining state (baseline) and/or in response to a supervised 18-wk endurance training (changes) in 102 young Chinese males (nonathletes). Phenotypes measured were running economy (RE) and V·O2max. Genomic DNA was extracted from white blood cells and the genotypes were analyzed by PCR-RFLP in single nucleotide polymorphisms (SNP) rs1937, rs2306604 and rs1049432. Genotype distributions were in Hardy-Weinberg equilibrium at three loci (p > 0.05). When the three polymorphisms were considered together, three haplotypes were estimated, i.e., Grs1937-Ars2306604-Grs1049432 (49 %), Grs1937-Grs2306604-Grs1049432 (33 %) and Crs1937-Grs2306604-Trs1049432 (18 %). SNPrs1937 and rs1049432 achieved near complete linkage disequilibrium (LD) (D′ = 1 and r2 = 0.903). We found no significant differences in baseline levels of V·O2max and RE between TFAM genotypes or haplotypes. Similarly, we found no differences for the training-induced changes of both variables. It was concluded that the three polymorphisms in TFAM gene rs1937, rs2306604 and rs1049432 do not predict endurance capacity/trainability, at least in Chinese males.

References

  • 1 Adhihetty P J, Irrcher I, Joseph A M, Ljubicic V, Hood D A. Plasticity of skeletal muscle mitochondria in response to contractile activity.  Exp Physiol. 2003;  88 99-107
  • 2 Anderson G S, Rhodes E C. A review of blood lactate and ventilatory methods of detecting transition thresholds.  Sports Med. 1989;  8 43-55
  • 3 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 4 Bosco C, Montanari G, Ribacchi R, Giovenali P, Latteri F, Iachelli G, Faina M M, Colli R, Dal Monte A, La Rosa M. Relationship between the efficiency of muscular work during jumping and the energetics of running.  Eur J Appl Physiol. 1987;  56 138-143
  • 5 Calbet J A, Lundby C, Koskolou M, Boushel R. Importance of hemoglobin concentration to exercise: acute manipulations.  Respir Physiol Neurobiol. 2006;  151 132-140
  • 6 Chabi B, Adhihetty P J, Ljubicic V, Hood D A. How is mitochondrial biogenesis affected in mitochondrial disease?.  Med Sci Sports Exerc. 2005;  37 2102-2110
  • 7 Cordain L, Gotshall R W, Eaton S B, Eaton 3rd S B. Physical activity, energy expenditure and fitness: an evolutionary perspective.  Int J Sports Med. 1998;  19 328-335
  • 8 Crow M T, Kushmerick M J. Chemical energetics of slow- and fast-twitch muscles of the mouse.  J Gen Physiol. 1982;  79 147-166
  • 9 Dong X, Ghoshal K, Majumder S, Yadav S P, Jacob S T. Mitochondrial transcription factor A and its downstream targets are up-regulated in a rat hepatoma.  J Biol Chem. 2002;  277 43309-43318
  • 10 Ekstrand M I, Falkenberg M, Rantanen A, Park C B, Gaspari M, Hultenby K, Rustin P, Gustafsson C M, Larsson N G. Mitochondrial transcription factor A regulates mtDNA copy number in mammals.  Hum Mol Genet. 2004;  13 935-944
  • 11 Feitosa M F, Gaskill S E, Rice T, Rankinen T, Bouchard C, Rao D C, Wilmore J H, Skinner J S, Leon A S. Major gene effects on exercise ventilatory threshold: the HERITAGE Family Study.  J Appl Physiol. 2002;  93 1000-1006
  • 12 Garstka H L, Schmitt W E, Schultz J, Sogl B, Silakowski B, Perez-Martos A, Montoya J, Wiesner R J. Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA.  Nucleic Acids Res. 2003;  31 5039-5047
  • 13 Gunther C, von Hadeln K, Muller-Thomsen T, Alberici A, Binetti G, Hock C, Nitsch R M, Stoppe G, Reiss J, Gal A, Finckh U. Possible association of mitochondrial transcription factor A (TFAM) genotype with sporadic Alzheimer disease.  Neurosci Lett. 2004;  369 219-223
  • 14 Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K, Clayton D A, Wibom R, Larsson N G. A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts.  Proc Natl Acad Sci USA. 2004;  101 3136-3141
  • 15 Irrcher I, Adhihetty P J, Joseph A M, Ljubicic V, Hood D A. Regulation of mitochondrial biogenesis in muscles by endurance exercise.  Sports Med. 2003;  33 783-793
  • 16 Kaneko M. Mechanics and energetics in running with special reference to efficiency.  J Biomech. 1990;  23 (Suppl 1) 57-63
  • 17 Kang D, Hamasaki N. Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: overview of its multiple roles.  Ann NY Acad Sci. 2005;  1042 101-108
  • 18 Kanki T, Ohgaki K, Gaspari M, Gustafsson C M, Fukuoh A, Sasaki N, Hamasaki N, Kang D. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA.  Mol Cell Biol. 2004;  24 9823-9834
  • 19 Larsson N G, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh G S, Clayton D A. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice.  Nat Genet. 1998;  18 231-236
  • 20 Maniura-Weber K, Goffart S, Garstka H L, Montoya J, Wiesner R J. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells.  Nucleic Acids Res. 2004;  32 6015-6027
  • 21 Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, Movilla N, Perez-Martos A, Rodriguez de Cordoba S, Gallardo M E, Enriquez J A. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants.  Nat Genet. 2006;  38 1261-1268
  • 22 Pilegaard H, Saltin B, Neufer P D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle.  J Physiol. 2003;  546 851-858
  • 23 Reese M G, Eeckman F H, Kulp D, Haussler D. Improved splice site detection in Genie.  J Comput Biol. 1997;  4 311-323
  • 24 Reyes A, Mezzina M, Gadaleta G. Human mitochondrial transcription factor A (mtTFA): gene structure and characterization of related pseudogenes.  Gene. 2002;  106 27-36
  • 25 Rogozin I B, Milanesi L. Analysis of donor splice sites in different eukaryotic organisms.  J Mol Evol. 1997;  45 50-59
  • 26 Saltin B. Hemodynamic adaptations to exercise.  Am J Cardiol. 1985;  55 42D-47D
  • 27 Saunders P U, Pyne D B, Telford R D, Hawley J A. Factors affecting running economy in trained distance runners.  Sports Med. 2004;  34 465-485
  • 28 Sardiello M, Tripoli G, Romito A, Minervini C, Viggiano L, Caggese C, Pesole G. Energy biogenesis: one key for coordinating two genomes.  Trends Genet. 2005;  21 12-16
  • 29 Scarpulla R C. Nuclear control of respiratory gene expression in mammalian cells.  J Cell Biochem. 2006;  97 673-683
  • 30 Schaid D J, Rowland C M, Tines D E, Jacobson R M, Poland G A. Score tests for association between traits and haplotypes when linkage phase is ambiguous.  Am J Hum Genet. 2002;  70 425-434
  • 31 Shi Y Y, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci.  Cell Res. 2005;  15 97-98
  • 32 Shimizu M, Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Froelicher V F. The ventilatory threshold: method, protocol, and evaluator agreement.  Am Heart J. 1991;  122 509-516
  • 33 Short K R, Vittone J L, Bigelow M L, Proctor D N, Rizza R A, Coenen-Schimke J M, Nair K S. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity.  Diabetes. 2003;  52 1888-1896
  • 34 Volkov N I, Shirkovets E A, Borilkevich V E. Assessment of aerobic and anaerobic capacity of athletes in treadmill running tests.  Eur J Appl Physiol. 1975;  34 121-130
  • 35 Wagner P D. New ideas on limitations to V·O2max.  Exerc Sports Sci Rev. 2000;  28 10-14
  • 36 Wendt I R, Gibbs C L. Energy production of rat extensor digitorum longus muscle.  Am J Physiol. 1973;  224 1081-1086
  • 37 Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener H H, Burden S J, Oldfors A, Westerblad H, Larsson N G. Increased mitochondrial mass in mitochondrial myopathy mice.  Proc Natl Acad Sci USA. 2002;  99 15066-15071
  • 38 Williams K R, Cavanagh P R. Relationship between distance running mechanics, running economy, and performance.  J Appl Physiol. 1987;  63 1236-1245
  • 39 Willis W T, Jackman M R. Mitochondrial function during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1347-1353
  • 40 Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA.  Cancer Res. 2003;  63 3729-3734
  • 41 Yoshida Y, Izumi H, Ise T, Uramoto H, Torigoe T, Ishiguchi H, Murakami T, Tanabe M, Nakayama Y, Itoh H, Kasai H, Kohno K. Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA.  Biochem Biophys Res Commun. 2002;  295 945-951

Dr. Yang Hu

Sport Biology

Beijing Sport University

Yuanmingyuan East Road, Haidian district

10083 Beijing

China

Phone: + 86 10 80 90 12 58

Fax: + 86 10 62 98 90 70

Email: bsugene@yahoo.com