Abstract
Three pathways for resource acquisition exist in the emergent aquatic plant, Lythrum salicaria (L.); a subterranean root system, a free-floating adventitious root system, and arbuscular mycorrhiza (AM) fungal hyphae colonizing subterranean roots. This study examined the relationship(s) among these pathways and their contribution to plant performance. If the free-floating adventitious root system and/or AM fungi contribute to plant growth in wetland habitats, we predicted that their absence would result in a significant reduction in plant performance. Furthermore, if a reduction in resource uptake, effected by an absence of free-floating adventitious roots and/or AM fungi, is compensated for by increased allocation to remaining pathway(s) for resource uptake, we predicted altered patterns of resource allocation among shoots and the remaining pathway(s) for resource uptake. Contrary to our predications, plants experiencing adventitious root removal and/or grown in the absence of AM fungi generally had greater biomass and total shoot height than controls. Similarly, while levels of AM colonization and subterranean root biomass displayed a treatment effect, the observed responses did not correspond with our predictions. This was also true for shoot : subterranean root dry weight ratios. Our results indicate that there is interaction among the 3 pathways for resource acquisition in L. salicaria and an effect on plant performance. The adaptive significance of these characteristics is unclear, highlighting the potential difficulties in extrapolating from terrestrial to aquatic plant species and among aquatic plant species with potentially different life history strategies.
Key words
Arbuscular mycorrhiza - adventitious roots -
Lythrum salicaria
- aquatic plants - flooding.
References
1
Armstrong W., Brandle R., Jackson M. B..
Mechanisms of flood tolerance in plants.
Acta Botanica Neerlandica.
(1994);
43
307-358
2
Blom C. W. P. M..
Adaptations to flooding stress: from plant community to molecule.
Plant Biology.
(1999);
1
261-273
3
Blom C. W. P. M., Voesenek L. A. C. J., Visser E. J. W..
Physiological ecology of river species: adaptive responses of plants to submergence.
Annals of Botany.
(1994);
74
253-263
4
Brundrett M. C., Piche Y., Peterson R. L..
A new method for observing the morphology of vesicular-arbuscular mycorrhizae.
Canadian Journal of Botany.
(1984);
62
2128-2134
5
Cantelmo Jr. A. J., Ehrenfeld J. G..
Effects of microtopography on mycorrhizal infection in Atlantic white cedar (Chamaecyparis thyoides [L.] Mills.).
Mycorrhiza.
(1999);
8
175-180
6
Cerligione L. J., Liberta A. E., Anderson R. C..
Effects of soil moisture and soil sterilization on vesicular-arbuscular mycorrhizal colonizaiton and growth of little bluestem (Schizachyrium scoparium) .
Canadian Journal of Botany.
(1988);
66
757-761
7
Cooke J. C., Lefor M. W..
The mycorrhizal status of selected plant species from Conecticut wetlands and transition zones.
Restoration Ecology.
(1998);
6
213-222
8
Cornwell W. K., Bedford B. L., Chapin C. T..
Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization.
American Journal of Botany.
(2001);
88
1824-1829
9
Eissenstat D..
Root structure and function in an ecological context.
New Phytologist.
(2000);
148
353-354
10
Etherington J. R..
Comparative studies of plant growth and distribution in relation to waterlogging. 10. Differential formation of adventitious roots and their experimental excision in Epilobium hirsutum and Chamerion angustifolium .
Journal of Ecology.
(1984);
72
389-404
11
Fox A. M., Haller W. T..
Production and survivorship of the functional stolons of giant cutgrass, Zizaniopsis miliacea (Poaceae).
American Journal of Botany.
(2000);
87
811-818
12
Fraser L. H., Feinstein L. M..
Effects of mycorrhizal inoculant, N : P supply ratio, and water depth on the growth and biomass allocation of three wetland plant species.
Canadian Journal of Botany.
(2005);
83
1117-1125
13
Gill C. J..
The ecological significance of adventitious rooting as a response to flooding in woody species, with special reference to Alnus glutinosa (L.) Gaertn.
Flora.
(1975);
164
85-97
14
Goodman S. N..
Toward evidence-based medical statistics. 1: The P value fallacy.
Annals of Internal Medicine.
(1999);
130
995-1004
15 Grace J. B., Tilman D.. Perspectives on Plant Competition. San Diego, CA; Academic Press Inc. (1990)
16
Grime J. P., Thompson K., Hunt R., Hodgson J. G., Cornelissen J. H. C., Rorison I. H., Hendry G. A. F., Ashenden T. W., Askew A. P., Band S. R., Booth R. E., Bossard C. C., Campbell B. D., Cooper J. E. L..
Integrated screening validates primary axes of specialisation in plants.
Oikos.
(1997);
79
259-281
17 Hewitt E.. Sand and Water Culture Methods Used in the Study of Plant Nutrition. Commonwealth Agricultural Bureaux, Farnham Royal. (1966)
18
Hook D. D., Brown C. L..
Root adaptations and relative flood tolerance of five hardwood species.
Forest Science.
(1973);
19
225-229
19
Hosner J. F., Boyce S. G..
Tolerance to water saturated soil of various bottomland hardwoods.
Forest Science.
(1962);
8
180-186
20
Jackson W. T..
The role of adventitious roots in recovery of shoots following flooding of the original root systems.
American Journal of Botany.
(1955);
42
816-819
21
Javier R. R..
Effects of adventitious root removal on the growth of flooded tropical pasture legumes Macroptilium lathyroides and Vigna luteola .
Annals of Tropical Research.
(1985);
7
12-20
22
Johnson N. C., Graham J. H., Smith F. A..
Functioning of mycorrhizal associations along the mutualism-parasitism continuum.
New Phytologist.
(1997);
135
575-586
23
Keeley J. E..
Endomycorrhizae influence growth of Blackgum seedlings in flooded soils.
American Journal of Botany.
(1980);
67
6-9
24 Marschner H.. Mineral Nutrition of Higher Plants. London; Academic Press Limited (1995)
25
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L., Swan J. A..
A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi.
New Phytologist.
(1990);
115
495-501
26
Miller S. P., Sharitz R. R..
Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species.
Functional Ecology.
(2000);
14
738-748
27
Muthukumar T., Udaiyan K., Shanmughavel P..
Mycorrhiza in sedges - an overview.
Mycorrhiza.
(2004);
14
65-77
28
Nicotra A. B., Babicka N., Westoby M..
Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts.
Oecologia.
(2002);
130
136-145
29
Osundina M. A., Osonubi O..
Adventitious roots, leaf abcission and nutrient status of flooded Gmelina and Tectona seedlings.
Tree Physiology.
(1989);
5
473-484
30
Reynolds H. L., D'Antonio C. D..
The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion.
Plant and Soil.
(1996);
185
75-87
31
Saif S. R..
The influence of soil aeration on the efficiency of vesicular-arbuscular mycorrhizae. I. Effect of soil oxygen on the growth and mineral uptake of Eupatorium odoratum L. inoculated with Glomus macrocarpus .
New Phytologist.
(1981);
88
649-659
32
Schenk H. J., Jackson R. B..
Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems.
Journal of Ecology.
(2002);
90
480-494
33 Sculthorpe C. D.. The Biology of Aquatic Vascular Plants. London; Edward Arnold Ltd. (1967)
34
Shipley B., Dion J..
The allometry of seed production in herbaceous angiosperms.
American Naturalist.
(1992);
139
467-483
35
Siebel H. N., Blom C. W. P. M..
Effects of irregular flooding on the establishment of tree species.
Acta Botanica Neerlandica.
(1998);
47
231-240
36
Smith S. E., Dickson S..
Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques.
Australian Journal of Plant Physiology.
(1991);
18
637-648
37 Smith S. E., Read D. J.. Mycorrhizal Symbiosis. San Diego; Academic Press (1997)
38
Solaiman M. Z., Hirata H..
Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes.
Soil Science and Plant Nutrition.
(1995);
41
505-514
39
Solaiman M. Z., Hirata H..
Effectiveness of arbuscular mycorrhizal colonization at nursery-stage on growth and nutrition in wetland rice (Oryza sativa L.) after transplanting under different soil fertility and watering regimes.
Soil Science and Plant Nutrition.
(1996);
42
561-571
40
Solaiman M. Z., Hirata H..
Responses of directly seeded wetland rice to arbuscular mycorrhizal fungi inoculation.
Journal of Plant Nutrition.
(1997);
20
1479-1487
41
Solaiman M. Z., Hirata H..
Glomus-wetland rice mycorrhizas influenced by nursery inoculation techniques under high fertility soil conditions.
Biology and Fertility of Soils.
(1998);
27
92-96
42
Staddon P. L., Fitter A. H..
The differential vitality of intraradical mycorrhiza structures and its implications.
Soil Biology and Biochemistry.
(2001);
33
129-132
43 Steel R. G. D., Torrie J. H.. Principles and Procedures of Statistics. New York; McGraw-Hill, Inc. (1980)
44
Sterne J. A. C., Smith G. D..
Sifting the evidence - what's wrong with significance tests?.
Physical Therapy.
(2001);
81
1464-1469
45
Stevens K. J., Peterson R. L..
The effect of a water gradient on the vesicular-arbuscular mycorrhizal status of Lythrum salicaria L. (purple loosestrife).
Mycorrhiza.
(1996);
6
99-104
46
Stevens K. J., Peterson R. L., Stephenson G. R..
Vegetative propagation and the tissues involved in lateral spread of Lythrum salicaria .
Aquatic Botany.
(1997 a);
56
11-24
47
Stevens K. J., Peterson R. L., Stephenson G. R..
Morphological and anatomical responses of Lythrum salicaria L. (purple loosestrife) to an imposed water gradient.
International Journal of Plant Science.
(1997 b);
158
172-183
48
Stevens K. J., Peterson R. L., Reader R. J..
The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance.
Annals of Botany.
(2002 a);
89
621-625
49
Stevens K. J., Spender S. W., Peterson R. L..
Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions.
Mycorrhiza.
(2002 b);
12
277-283
50 Thompson D. Q., Stuckey R. L., Thompson E. B.. Spread, Impact, and Control of Purple Loosestrife (Lythrum saliaria) in North American Wetlands. Washington DC; United States Department of the Interior Fish and Wildlife Service (1987)
51 Tilman D.. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton; Princeton University Press (1988)
52
Tsukahara H., Kozlowski T. T..
Importance of adventitious roots to growth of flooded Platanus occidentalis seedlings.
Plant and Soil.
(1985);
88
123-132
53
Turner S. D., Friese C. F..
Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen.
Restoration Ecology.
(1998);
6
44-51
54 U.S. National Wetlands Inventory .National List of Plant Species that Occur in Wetlands. St. Petersburg, Florida; U.S. Fish and Wildlife Service (1996)
55
Visser E. J. W., Blom C. W. P. M., Voesenek L. A. C. J..
Flooding-induced rooting in Rumex : morphology and development in an ecological perspective.
Acta Botanica Neerlandica.
(1996);
45
17-28
56
Wahl S., Ryser P..
Root tissue structure is linked to ecological strategies of grasses.
New Phytologist.
(2000);
148
459-471
57
White J. A., Charvat I..
The mycorrhizal status of an emergent aquatic, Lythrum salicaria L., at different levels of phosphorus availability.
Mycorrhiza.
(1999);
9
191-197
58
Yoshikawa M., Hukusima T..
The impact of extreme run-off events from the Sakasagawa river on the Senjogahara ecosystem, Nikko National Park. V. The importance of adventitious root systems for burial tolerance of different tree species.
Ecological Research.
(1997);
12
39-46
K. J. Stevens
Department of Biological Sciences Institute of Applied Sciences University of North Texas
P.O. Box 31 05 59
Denton, TX 76203
USA
Email: kjstevens@unt.edu
Editor: J. T. M. Elzenga