Geburtshilfe Frauenheilkd 2007; 67(6): 611-619
DOI: 10.1055/s-2007-965092
Übersicht

Georg Thieme Verlag KG Stuttgart · New York

Asymmetrisches Dimethylarginin (ADMA): Ein endogener Hemmstoff der NO-Synthase - und auch ein Risikomarker der Präeklampsie?

Asymmetric dimethylarginine (ADMA): an endogenous inhibitor of NO synthase - also a risk marker for preeclampsia?R. Maas1 , A. Baschat2 , K. Hecher2 , R. H. Böger1
  • 1Arbeitsbereich Klinische Pharmakologie, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf
  • 2Klinik für Geburtshilfe und Pränatalmedizin, Universitätsklinikum Hamburg-Eppendorf
Weitere Informationen

Publikationsverlauf

eingereicht 15.9.2006 revidiert 16.2.2007

akzeptiert 19.2.2007

Publikationsdatum:
04. Juli 2007 (online)

Zusammenfassung

Die Präeklampsie oder EPH-Gestose ist auch heute noch eine der wichtigsten Ursachen maternaler und neonataler Morbidität und Mortalität. Die Ursachen der Präeklampsie sind multifaktoriell, aber das Auftreten einer Präeklampsie ist häufig mit einer endothelialen Dysfunktion assoziiert. Das Gefäßendothel nimmt eine zentrale Stellung in der Aufrechterhaltung des physiologischen Gefäßtonus und der Gefäßstruktur ein; es ist auch für die Kreislaufanpassung an die Schwangerschaft mitverantwortlich. Einer der wichtigsten Mediatoren, die vom intakten Gefäßendothel freigesetzt werden, ist Stickstoffmonoxid (NO). Die Bildung von NO wird durch asymmetrisches Dimethylarginin (ADMA) gehemmt, ein Abkömmling der Aminosäure L-Arginin, der endogen vorkommt und dessen Plasmakonzentration in kardiovaskulären Risikokonstellationen ansteigt. In mehreren klinischen Studien wurde gezeigt, dass Präeklampsie-Patientinnen höhere ADMA-Spiegel aufweisen als gesunde Schwangere. Im Tierexperiment kann eine solche Hemmung der NO-Bildung eine Präeklampsie auslösen. Möglicherweise ist also ADMA ein neuer Marker eines erhöhten Präeklampsie-Risikos in der Schwangerschaft, ebenso wie es ein Marker eines erhöhten kardiovaskulären Risikos im Allgemeinen darstellt. Durch die Gabe von L-Arginin können die adversen Wirkungen von ADMA auf das Gefäßsystem aufgehoben werden; L-Arginin führte auch zur Senkung eines pathologisch erhöhten Blutdrucks bei schwangeren Frauen.

Abstract

Preeclampsia still is one of the major causes of maternal and neonatal morbidity and death. The causes of preeclampsia are multifactorial, but a common pathway of vascular impairment in preeclampsia is endothelial dysfunction. The endothelium plays a crucial role in regulating physiological vascular tone and structure as well as in the vascular adaptations to pregnancy. The major mediator responsible for this is nitric oxide (NO). NO formation is inhibited by asymmetric dimethylarginine (ADMA), an endogenous analogue of L-arginine. ADMA plasma levels are increased in patients at high cardiovascular risk. Several clinical studies have produced evidence to show that preeclampsia is associated with elevated ADMA plasma concentrations as compared to healthy pregnant women. In animal models, preeclampsia can be incuced by administration of NO synthase inhibitors. Therefore, ADMA may be a novel marker of the risk of preeclampsia, like it is a marker of cardiovascular risk in general. Administration of L-arginine can antagonize the adverse effects of ADMA on the vasculature; L-arginine has also been shown to reduce elevated blood pressure in pregnant women.

Literatur

  • 1 Sibai B, Dekker G, Kupferminc M. Pre-eclampsia.  Lancet. 2005;  365 785-799
  • 2 MacKay A P, Berg C J, Atrash H K. Pregnancy-related mortality from preeclampsia and eclampsia.  Obstet Gynecol. 2001;  97 533-538
  • 3 Welsch H, Krone H A. Mütterliche Mortalität bei HELLP-Syndrom in Bayern 1983 - 1992.  Zentralbl Gynäkol. 1994;  116 202-206
  • 4 Roberts J M, Cooper D W. Pathogenesis and genetics of pre-eclampsia.  Lancet. 2001;  357 53-56
  • 5 Redman C W, Sargent I L. Latest advances in understanding preeclampsia.  Science. 2005;  308 1592-1594
  • 6 Sibai B M, Ewell M, Levine R J, Klebanoff M A, Esterlitz J, Catalano P M, Goldenberg R L, Joffe G. Risk factors associated with preeclampsia in healthy nulliparous women.  Am J Obstet Gynecol. 1997;  177 1003-1010
  • 7 Tsukimori K, Ishida K, Maeda H, Koyanagi T, Nakano H. The placenta as a possible source of the factor causing endothelial cell injury in preeclampsia.  Hypertens Pregn. 1994;  13 358
  • 8 Cross J C. Trophoblast function in normal and preeclamptic pregnancy.  Fetal Matern Med Rev. 1996;  8 57-66
  • 9 Endresen M J, Tosti E, Heimli H, Lorentzen B, Henriksen T. Effects of free fatty acids found increased in women who develop preeclampsia on the ability of endothelial cells to produce prostacyclin, cGMP and inhibit platelet aggregation.  Scand J Clin Lab Invest. 1994;  54 549-557
  • 10 Sattar N, Gaw A, Packard C J, Greer I A. Potential pathogenetic roles of aberrant lipoprotein and fatty acid metabolism in preeclampsia.  Br J Obstet Gynaecol. 1996;  103 614-620
  • 11 Redman C WG. Immunology of preeclampsia.  Semin Perinatol. 1991;  15 257-262
  • 12 Stark J M. Preeclampsia and cytokine-induced oxidative stress.  Br J Obstet Gynaecol. 1993;  100 105-109
  • 13 Meekins J W, McLaughlin P J, West D C, MacFadyen I R, Johnson P M. Endothelial cell activation by tumor necrosis factor-alpha (TNF-alpha) and the development of preeclampsia.  Clin Exp Immunol. 1994;  98 110-114
  • 14 Roberts J M, Taylor R N, Musci T J, Rodgers G M, Hubel C A, McLaughlin M K. Preeclampsia: an endothelial cell disorder.  Am J Obstet Gynecol. 1989;  161 1200
  • 15 Seligman S P, Buyon J P, Clancy R M, Young B K, Abramson S B. The role of nitric oxide in the pathogenesis of preeclampsia.  Am J Obstet Gynecol. 1994;  171 944-948
  • 16 Lopez-Jaramillo P, Narvaez M, Calle A, Rivera J, Jacome P, Ruano C, Nava E. Cyclic guanosine 3′, 5′ monophosphate concentrations in preeclampsia: Effects of hydralazine.  Br J Obst Gynecol. 1996;  103 33-38
  • 17 Williams D J, Vallance P JT, Neild H, Spencer J AD, Imms F J. Nitric oxide-mediated vasodilation in human pregnancy.  Am J Physiol. 1997;  272 H748-H752
  • 18 Lopez-Jaramillo P. Calcium, nitric oxide, and preeclampsia.  Semin Perinatol. 2000;  24 33-36
  • 19 Beinder E, Frobenius W. Die Präeklampsie: Eine Endothelerkrankung?.  Dt Ärztebl. 2000;  97 A2703-2706
  • 20 Baylis C, Beinder E, Sütö T, August P. Recent insights into the roles of nitric oxide and renin-angiotensin in the pathophysiology of preeclamptic pregnancy.  Semin Nephrol. 1998;  18 208-230
  • 21 Sladek S M, Magness R R, Conrad K P. Nitric oxide and pregnancy.  Am J Physiol. 1997;  272 R441-R463
  • 22 Buhimschi I A, Saade G R, Chwalisz K, Garfield R E. The nitric oxide pathway in pre-eclampsia: pathophysiological implications.  Hum Reprod Update. 1998;  4 25-42
  • 23 Kobayashi T, Tokunaga N, Isoda H, Kanayama N, Terao T. Vasospasms are characteristic in cases with eclampsia/preeclampsia and HELLP syndrome: proposal of an angiospastic syndrome of pregnancy.  Semin Thromb Hemost. 2001;  27 131-135
  • 24 Lowe D T. Nitric oxide dysfunction in the pathophysiology of preeclampsia.  Nitric Oxide. 2000;  4 441-458
  • 25 Khan F, Belch J J, MacLeod M, Mires G. Changes in endothelial function precede the clinical disease in women in whom preeclampsia develops.  Hypertension. 2005;  46 1123-1128
  • 26 Myers J, Mires G, Macleod M, Baker P. In preeclampsia, the circulating factors capable of altering in vitro endothelial function precede clinical disease.  Hypertens. 2005;  45 258-263
  • 27 Förstermann U, Closs E I, Pollock J S. et al . Nitric oxide synthase isoenzymes. Characterization, purification, molecular cloning, and functions.  Hypertension. 1994;  23 1121-1131
  • 28 Furchgott R F. The role of endothelium in the responses of vascular smooth muscle to drugs.  Annu Rev Pharmacol Toxicol. 1984;  24 175-197
  • 29 Böger R H, Bode-Böger S M, Frölich J C. The L-arginine - nitric oxide pathway: Role in atherosclerosis and therapeutic implications.  Atherosclerosis. 1996;  127 1-11
  • 30 Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of NO synthesis in chronic renal failure.  Lancet. 1992;  339 572-575
  • 31 Böger R H, Sydow K, Borlak J, Thum T, Lenzen H, Schubert B, Tsikas D, Bode-Böger S M. LDL cholesterol upregulates synthesis of asymmetric dimethylarginine (ADMA) in human endothelial cells. Involvement of S-adenosylmethionine-dependent methyltransferases.  Circ Res. 2000;  87 99-105
  • 32 Tsikas D, Sandmann J, Böger R H, Gutzki F M, Mayer B, Frölich J C. Assessment of nitric oxide synthase activity by gas chromatography-mass spectrometry.  J Chromatogr B. 2000;  742 143-153
  • 33 Böger R H, Bode-Böger S M, Thiele W, Junker W, Alexander K, Frölich J C. Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease.  Circulation. 1997;  95 2068-2074
  • 34 Valkonen V P, Päivä H, Salonen J T, Lakka T A, Lehtimäki T, Laakso J, Laaksonen R. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine.  Lancet. 2001;  358 2127-2128
  • 35 Schnabel R, Blankenberg S, Lubos E, Lackner K J, Rupprecht H J, Espinola-Klein C, Jachmann N, Post F, Peetz D, Bickel C, Cambien F, Tiret L, Münzel T. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study.  Circ Res. 2005;  97 e53-59
  • 36 Calver A, Collier J, Leone A, Moncada S, Vallance P. Effect of local intra-arterial asymmetric dimethylarginine (ADMA) on the forearm arteriolar bed of healthy volunteers.  J Hum Hypertens. 1993;  7 193-194
  • 37 Kielstein J T, Impraim B, Simmel S, Bode-Boger S M, Tsikas D, Frolich J C, Hoeper M M, Haller H, Fliser D. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans.  Circulation. 2004;  109 172-177
  • 38 Achan V, Broadhead M, Malaki M, Whitley G, Leiper J, MacAllister R, Vallance P. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolised by dimethylarginine dimethylaminohydolase.  Arterioscler Thromb Vasc Biol. 2003;  23 1455-1459
  • 39 Böger R H, Bode-Böger S M, Szuba A, Tangphao O, Tsao P S, Chan J R, Blaschke T F, Cooke J P. Asymmetric dimethylarginine: a novel risk factor for endothelial dysfunction. Its role in hypercholesterolemia.  Circulation. 1998;  98 1842-1847
  • 40 Lundman P, Eriksson M J, Stühlinger M, Cooke J P, Hamsten A, Tornvall P. Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine.  J Am Coll Cardiol. 2001;  38 111-116
  • 41 Surdacki A, Nowicki M, Sandmann J, Tsikas D, Böger R H, Bode-Böger S M, Kruszelnicka-Kwiatkowska O, Kokot F, Dubiel J, Frölich J C. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetrical dimethylarginine in men with essential hypertension.  J Cardiovasc Pharmacol. 1999;  33 652-658
  • 42 Gorenflo M, Zheng C, Werle E, Fiehn W, Ulmer H E. Plasma levels of asymmetrical dimethyl-L-arginine in patients with congenital heart disease and pulmonary hypertension.  J Cardiovasc Pharmacol. 2001;  37 489-492
  • 43 Kielstein J T, Böger R H, Bode-Böger S M, Schäffer J, Barbey M, Koch K M, Frölich J C. Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: Relationship to treatment method and atherosclerotic disease.  J Am Soc Nephrol. 1999;  10 594-600
  • 44 Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T. Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure.  Life Sci. 1998;  62 2425-2430
  • 45 Abbasi F, Asagami T, Cooke J P, Lamendola C, McLaughlin T, Reaven G M, Stuehlinger M, Tsao P S. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus.  Am J Cardiol. 2001;  88 1201-1203
  • 46 Yoo J H, Lee S C. Elevated levels of plasma homocyst(e)ine and asymmetric dimethylarginine in elderly patients with stroke.  Atherosclerosis. 2001;  158 425-430
  • 47 Tsikas D, Rode I, Becker T, Nashan B, Klempnauer J, Frölich J C. Elevated plasma and urine levels of ADMA and 15(S)-8-iso-PGF2alpha in end-stage liver disease.  Hepatology. 2003;  38 1063-1064
  • 48 Roberts J M, Redman C W. Pre-eclampsia: more than pregnancy-induced hypertension.  Lancet. 1993;  341 1447-1451
  • 49 Hayman R, Warren A, Johnson I, Baker P. The preliminary characterization of a vasoactive circulating factor(s) in preeclampsia.  Am J Obstet Gynecol. 2001;  184 1196-1203
  • 50 Fickling S A, Williams D, Vallance P, Nussey S S, Whitley G SJ. Plasma concentrations of endogenous inhibitor of nitric oxide synthesis in normal pregnancy and pre-eclampsia.  Lancet. 1993;  342 242-243
  • 51 Holden D P, Fickling S A, Whitley G SJ, Nussey S S. Plasma concentrations of asymmetric dimethylarginine, a natural inhibitor of nitric oxide synthase, in normal pregnancy and preeclampsia.  Am J Obstet Gynecol. 1998;  178 551-556
  • 52 Pettersson A, Hedner T, Milsom I. Increased circulating concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis, in preeclampsia.  Acta Obstet Gynecol Scand. 1998;  77 808-813
  • 53 Ellis J, Wennerholm U B, Bengtsson A, Lilja H, Pettersson A, Sultan B, Wennergren M, Hagberg H. Levels of dimethylarginines and cytokines in mild and severe preeclampsia.  Acta Obstet Gynecol Scand. 2001;  80 602-608
  • 54 Savvidou M D, Hingorani A D, Tsikas D, Frölich J C, Vallance P, Nicolaides K H. Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia.  Lancet. 2003;  361 1511-1517
  • 55 Maas R, Serrano N, Schwedhelm E, Diaz L A, Casas J P, Böger R H, Lopez-Jaramillo P. Plasma concentration of asymmetrical dimethylarginine (ADMA) in women with pre-eclampsia from a high-risk population.  J Am Med Assoc. 2004;  291 823-824
  • 56 Lopez-Jaramillo P, Casas J P, Serrano N. Preeclampsia: from epidemiological observations to molecular mechanisms.  Braz J Med Biol Res. 2001;  34 1227-1235
  • 57 Mittermayer F, Mayer B X, Meyer A, Winzer C, Pacini G, Wagner O F, Wolzt M, Kautzky-Willer A. Circulating concentrations of asymmetrical dimethyl-L-arginine are increased in women with previous gestational diabetes.  Diabet. 2002;  45 1372-1378
  • 58 Stühlinger M, Abbasi F, Chu J W, Lamendola C, McLaughlin T L, Cooke J P, Reaven G M, Tsao P S. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor.  J Am Med Assoc. 2002;  287 1420-1426
  • 59 Momohara Y, Sakamoto S, Obayashi S, Aso T, Goto M, Azuma H. Roles of endogenous nitric oxide synthase inhibitors and endothelin-1 for regulating myometrial contractions during gestation in the rat.  Mol Hum Reprod. 2004;  10 505-512
  • 60 Noris M, Todeschimi M, Cassis P, Pasta F, Cappellini A, Bonazzola S, Macconi D, Maucci R, Porrati F, Benigni A, Picciolo C, Remuzzi G. L-arginine depletion in preeclampsia orients nitric oxide synthase toward oxidant species.  Hypertension. 2004;  43 614-622
  • 61 Loyaga-Rendon R Y, Sakamoto S, Beppu M, Aso T, Ishizaka M, Takahashi R, Azuma T. Accumulated endogenous nitric oxide synthase inhibitors, enhanced arginase activity, attenuated dimethylarginine dimethylaminohydrolase activity and intimal hyperplasia in premenopausal human uterine arteries.  Atherosclerosis. 2005;  178 231-239
  • 62 MacAllister R J, Parry H, Kimoto M, Ogawa T, Russell R J, Hodson H, Whitley G S, Vallance P. Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase.  Br J Pharmacol. 1996;  119 1533-1540
  • 63 Leiper J M, Santa Maria J, Chubb A, MacAllister R J, Charles I G, Whitley G S, Vallance P. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases.  Biochem J. 1999;  343 209-214
  • 64 Ito A, Tsao P S, Adimoolam S, Kimoto M, Ogawa T, Cooke J P. Novel mechanism for endothelial dysfunction. Dysregulation of dimethylarginine dimethylaminohydrolase.  Circulation. 1999;  99 3092-3095
  • 65 Stühlinger M C, Tsao P S, Her J H, Kimoto M, Balint R F, Cooke J P. Homocysteine impairs the nitric oxide synthase pathway. Role of asymmetric dimethylarginine.  Circulation. 2001;  104 2569-2575
  • 66 Schwedhelm E. Quantification of ADMA: analytical approaches.  Vasc Med. 2005;  10 S89-S95
  • 67 Schwedhelm E, Tan-Andresen J, Maas R, Riederer U, Schulze F, Böger R H. Liquid chromatography-tandem mass spectrometry method for the analysis of asymmetric dimethylarginine in human plasma.  Clin Chem. 2005;  51 1268-1271
  • 68 Schwedhelm E, Maas R, Tan-Andresen J, Schulze F, Riederer U, Böger R H. High-throughput liquid chromatographic-tandem mass spectrometric determination of arginine and dimethylated arginine derivatives in human and mouse plasma.  J Chromatogr B. 2007; 
  • 69 Schulze F, Wesemann R, Schwedhelm E, Sydow K, Albsmeier J, Cooke J P, Böger R H. Determination of ADMA using a novel ELISA assay.  Clin Chem Lab Med. 2004;  42 1377-1383
  • 70 Schulze F, Maas R, Freese R, Schwedhelm E, Silberhorn E, Böger R H. Determination of a reference value for N,N-dimethyl-L-arginine in 500 subjects.  Eur J Clin Invest. 2005;  35 622-626
  • 71 Slaghekke F, Dekker G, Jeffries B. Endogenous inhibitors of nitric oxide and preeclampsia: A review.  J Mat Neonat Med. 2006;  19 447-452
  • 72 Böger R H, Bode-Böger S M, Thiele W, Creutzig A, Alexander K, Frölich J C. Restoring vascular NO formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease.  J Am Coll Cardiol. 1998;  32 1336-1344
  • 73 Rector T S, Bank A J, Mullen K A, Tschumperlin L K, Sih R, Pillai K, Kubo S H. Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure.  Circulation. 1996;  93 2135-2141
  • 74 Ceremuzynksi L, Chamiec T, Herbacynska-Cedro K. Effect of supplemental oral L-arginine on exercise capacity in patients with stable angina pectoris.  Am J Cardiol. 1997;  80 331-333
  • 75 Böger R H, Bode-Böger S M. The clinical pharmacology of L-arginine.  Annu Rev Pharmacol. 2001;  41 79-99
  • 76 Facchinetti F, Longo M, Piccinini F, Neri I, Volpe A. L-arginine infusion reduces blood pressure in preeclamptic women through nitric oxide release.  J Soc Gynecol Invest. 1999;  6 202-207
  • 77 Staff A C, Berge L, Haugen G, Lorentzen B, Mikkelsen B, Henricksen T. Dietary supplementation with L-arginine or placebo in women with preeclampsia.  Acta Obstet Gynecol Scand. 2004;  83 103-107
  • 78 Germain A M, Valdés G, Romanik M C, Reyes M S. Evidence supporting a beneficial role for long-term L-arginine supplementation in high-risk pregnancies [Letter].  Hypertension. 2004;  44 e1
  • 79 Alexander B T, Llinas M T, Kruckeberg W C, Granger J P. L-arginine attenuates hypertension in pregnant rats with reduced uterine perfusion pressure.  Hypertension. 2004;  43 832-836
  • 80 Rytlewski K, Olszanecki R, Korbut R, Zdebski Z. Effects of prolonged oral supplementation with L-arginine on pressure and nitric oxide synthesis in preeclampsia.  Eur J Clin Invest. 2005;  35 32-37
  • 81 Rytlewski K, Olszanecki R, Lauterbach R, Grzyb A, Basta A. Effects of oral L-arginine on the fœtal condition and neonatal outcome in preeclampsia: A preliminary report.  Basic Clin Pharmacol Toxicol. 2006;  99 146-152
  • 82 Neri I, Jasonni V M, Gori G F, Blasi I, Facchinetti F. Effect of L-arginine on blood pressure in pregnancy-induced hypertension: a randomized placebo-controlled trial.  J Matern Fetal Neonatal Med. 2006;  19 277-281

Prof. Dr. med. Rainer H. Böger

Arbeitsbereich Klinische Pharmakologie, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf

Martinistraße 52

20246 Hamburg

eMail: boeger@uke.uni-hamburg.de