Int J Sports Med 2008; 29(2): 145-150
DOI: 10.1055/s-2007-965113
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Time Limit at V·O2max Velocity in Elite Crawl Swimmers

R. J. Fernandes1 , K. L. Keskinen2 , P. Colaço3 , A. J. Querido1 , L. J. Machado4 , P. A. Morais1 , D. Q. Novais1 , D. A. Marinho1 , J. P. Vilas Boas4
  • 1Swimming, Faculty of Sport, University of Porto, Porto, Portugal
  • 2Finnish Society of Sport Sciences, Helsinki, Finland
  • 3Athletics, Faculty of Sport, University of Porto, Porto, Portugal
  • 4Biomechanics Lab., Faculty of Sport, University of Porto, Porto, Portugal
Weitere Informationen

Publikationsverlauf

accepted after revision January 1, 2007

Publikationsdatum:
13. September 2007 (online)

Abstract

The purpose of this study is to assess, with elite crawl swimmers, the time limit at the minimum velocity corresponding to maximal oxygen consumption (TLim-vV·O2max), and to characterize its main determinants. Eight subjects performed an incremental test for vV·O2max assessment and, forty-eight hours later, an all-out swim at vV·O2max until exhaustion. V·O2 was directly measured using a telemetric portable gas analyzer and a visual pacer was used to help the swimmers keeping the predetermined velocities. Blood lactate concentrations, heart rate and stroke parameter values were also measured. TLim-vV·O2max and vV·O2max, averaged, respectively, 243.2 ± 30.5 s and 1.45 ± 0.08 m · s-1. TLim-vV·O2max correlated positively with V·O2 slow component (r = 0.76, p < 0.05). Negative correlations were found between TLim-vV·O2max and body surface area (r = - 0.80) and delta lactate (r = - 0.69) (p < 0.05), and with vV·O2max (r = - 0.63), v corresponding to anaerobic threshold (r = - 0.78) and the energy cost corresponding to vV·O2max (r = - 0.62) (p < 0.10). No correlations were observed between TLim-vV·O2max and stroking parameters. This study confirmed the tendency to TLim-vV·O2max be lower in the swimmers who presented higher vV·O2max and vAnT, possibly explained by their higher surface area, energy cost and anaerobic rate. Additionally, O2SC seems to be a determinant of TLim-vV·O2max.

References

  • 1 Astrand P-O, Saltin B. Maximal oxygen uptake and heart rate in various types of muscular activity.  J Appl Physiol. 1961;  16 977-981
  • 2 Barstow T J, Mole P. Linear and nonlinear characteristics of oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1991;  71 2099-2106
  • 3 Billat V. Physiologie et méthodologie de l'entraînement. De la théorie à la pratique. Paris, France; De Boeck Université 1998
  • 4 Billat V. V·O2 slow component and performance in endurance sports.  Br J Sports Med. 2000;  34 83-85
  • 5 Billat V, Renoux J C, Pinoteau J, Petit B, Koralsztein J P. Reproducibility of running time to exhaustion at V·O2max in subelite runners.  Med Sci Sports Exerc. 1994;  26 254-257
  • 6 Billat V, Faina M, Dalmonte A. A comparison of time to exhaustion at VO2max in elite cyclists, kayak paddlers, swimmers and runners.  Ergonomics. 1996;  39 267-277
  • 7 Cardoso C, Fernandes R, Vilas-Boas J P. Comparison of continuous and intermittent incremental protocols for direct V·O2max assessment. Chatard J‐C Biomechanics and Medicine in Swimming IX. Saint-Étienne; Publications de l'Université de Saint-Étienn 2003: 313-318
  • 8 Costill D, Kovaleski J, Porter D, Kirwan J, Fielding R, King D. Energy expenditure during front crawl swimming: predicting success in middle-distance events.  Int J Sports Med. 1985;  6 266-270
  • 9 Demarie S, Sardella F, Billat V, Magini W, Faina M. The V·O2 slow component in swimming.  Eur J Appl Physiol. 2001;  84 95-99
  • 10 Faina M, Billat V, Squadrone R, De Angelis M, Koralsztein J, Dal Monte A. Anaerobic contribution to the time to exhaustion at the minimal exercise intensity at which maximal oxygen uptake occurs in elite cyclists, kayakists and swimmers.  Eur J Appl Physiol. 1997;  76 13-20
  • 11 Fernandes R J, Cardoso C S, Soares S M, Ascensão A A, Colaço P J, Vilas-Boas J P. Time limit and V·O2 slow component at intensities corresponding to V·O2max in swimmers.  Int J Sports Med. 2003;  24 576-581
  • 12 Fernandes R, Almeida M, Morais P, Machado L, Soares S, Ascensão A, Colaço P, Morouço P, Vilas-Boas J P. Individual Anaerobic Threshold assessment in a swimming incremental test for V·O2max evaluation. Dikic N, Zivanic S, Ostojic S, Tornjanski Z Abstract Book of the 10th Annual Congress of the European College of Sport Science. Belgrade, Serbia; Sport Medicine Association of Serbia 2005: 266
  • 13 Fernandes R J, Billat V L, Cruz A C, Colaço P J, Cardoso C S, Vilas-Boas J P. Does net energy cost of swimming affect time to exhaustion at the individual's maximal oxygen consumption velocity?.  J Sports Med Phys Fitness. 2006;  46 373-380
  • 14 Howley E T, Basseet T, Welch H G. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 15 Keskinen K L, Rodríguez F A, Keskinen O P. Respiratory snorkel and valve system for breath-by-breath gas analysis in swimming.  Scand J Med Sci Sports. 2003;  13 322-329
  • 16 Kuipers H, Verstappen F T, Keize H A, Guerten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates.  Int J Sports Med. 1985;  6 197-201
  • 17 Lavoie J-M, Montpetit R M. Applied physiology of swimming.  Sports Med. 1986;  3 165-189
  • 18 Machado L J, Querido A J, Keskinen K L, Fernandes R J, Vilas-Boas J P. Mathematical modelling of the slow component of oxygen kinetics in front crawl swimming.  Port J Sport Sci. 2006;  6 142-144
  • 19 Prampero (di) P E. The energy cost of human locomotion on land and in water.  Int J Sports Med. 1986;  7 55-72
  • 20 Prampero (di) P E. Factors limiting maximal performance in humans.  Eur J Appl Physiol. 2003;  90 420-429
  • 21 Prampero (di) P E, Pendergast D, Wilson D, Rennie D. Blood lactic acid concentrations in high velocity swimming. Eriksson B, Furberg B, Nelson RC, Morehouse CA Proceedings of the Fourth International Congress on Swimming Medicine. Baltimore; University Park Press 1978: 249-261
  • 22 Renoux J-C. Evaluating the time limit at maximum aerobic speed in elite swimmers. Training implications.  Arch Physiol Biochem. 2001;  109 424-429
  • 23 Shuter B, Aslani A. Body surface area: Du Bois and Du Bois revisited.  Eur J Appl Physiol. 2000;  82 250-254
  • 24 Termin B, Pendergast D R. Training using the stroke frequency-velocity relationship to combine biomechanical and metabolic paradigms.  J Swimming Res. 2000;  14 9-17
  • 25 Thompson K G, Atkinson G, MacLaren D PM, Lees A. Reliability of metabolic and stroke-cycle responses during sub-maximal breaststroke swimming.  J Human Movement Stud. 2004;  46 35-54
  • 26 Toussaint H M, Hollander A P. Energetics of competitive swimming. Implications for training programmes.  Sports Med. 1994;  18 384-405
  • 27 Toussaint H M, Groot de G, Savelber H H, Vervoorn K, Hollander A P. Active drag related to velocity in male and female swimmers.  J Biomech. 1988;  21 435-438
  • 28 Wakayoshi K, D'Acquisto L, Cappaert J, Troup J. Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming.  Int J Sports Med. 1995;  16 19-23
  • 29 Zamparo P, Antonutto G, Capelli C, Francescato M P, Girardis M, Sangoi R, Soule R G, Pendergast D R. Effects of body size, body density, gender and growth on underwater torque.  Scand J Med Sci Sports. 1996;  6 273-280

Prof. PhD Ricardo Jorge Fernandes

Swimming
Faculty of Sport
University of Porto

Rua Dr. Plácido Costa, 91

4200 Porto

Portugal

Telefon: + 351 2 25 07 47 63

Fax: + 351 2 25 50 06 87

eMail: ricfer@fade.up.pt