Int J Sports Med 2008; 29(5): 390-394
DOI: 10.1055/s-2007-965333
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Drag Factor on Physiological Aspects of Rowing

D. A. Kane1 , R. L. Jensen1 , S. E. Williams2 , P. B. Watts1
  • 1Department of Health, Physical Education and Recreation, Northern Michigan University, Marquette, MI, United States
  • 2Department of Chemistry, Northern Michigan University, Marquette, MI, United States
Further Information

Publication History

accepted after revision March 27, 2007

Publication Date:
13 September 2007 (online)

Abstract

This study examined the effects of two resistances, or “drag factors” on selected physiological variables during incremental progressive rowing tests (seven 3-min stages) on a Concept2® ergometer. Subjects were seven male and seven female university club rowers. Their mean age, body mass and height were 19.6 ± 1.5 years, 72.7 ± 8.0 kg, and 172.2 ± 7.5 cm, respectively. Progressive tests were conducted using drag factors 100 (D100) and 150 (D150) before the spring racing season. Values were determined for the following physiological variables: ventilation (V·E), oxygen uptake (V·O2), heart rate (HR), blood lactate concentration (BLC), respiratory exchange ratio (R) and rowing economy (W/V·O2). Comparisons across all six submaximal stages showed no significant difference between D100 and D150 for any of the variables measured (p > .05). Maximal V·Emax was significantly greater at D100 than D150 (p < .02). Maximal V·O2, HR, BLC, R, stroke rate (SR) and W/V·O2 were greater at D100 than at D150, though not significantly so. The mean D100 - D150 differences in V·E and SR for each stage were significantly correlated (r = 0.76, p < .01), suggesting drag factor may affect V·E via SR.

References

  • 1 Boyas S, Nordez A, Cornu C, Guével A. Power responses of a rowing ergometer: mechanical sensors vs. Concept2® measurement system.  Int J Sports Med. 2006;  27 830-833
  • 2 Cosgrove M J, Wilson J, Watt D, Grant S F. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test.  J Sports Sci. 1999;  17 845-852
  • 3 Forsyth J J, Reilly T. Circadian rhythms in blood lactate concentration during incremental ergometer rowing.  Eur J Appl Physiol. 2004;  92 69-74
  • 4 Hagerman F C. Applied physiology of rowing.  Sports Med. 1984;  1 303-326
  • 5 Hahn A, Bourdon P, Tanner R. Protocols for the physiological assessment of rowers. Gore CJ Physiological Tests for Elite Athletes. Champaign, IL; Human Kinetics 2000: 317-318
  • 6 Hansen J, Sander M, Thomas G D. Metabolic modulation of sympathetic vasoconstriction in exercising skeletal muscle.  Acta Physiol Scand. 2000;  168 489-503
  • 7 Ingham S A, Whyte G P, Jones K, Nevill A M. Determinants of 2000 m rowing ergometer performance in elite rowers.  Eur J Appl Physiol. 2002;  88 243-246
  • 8 Jensen R L, Katch F I. A new approach to rowing ergometry: establishing exercise intensity relative to maximum force output.  Eur J Appl Physiol. 1991;  62 44-48
  • 9 Johnson E A. Pre-cooling during steady-state rowing decreases physiological strain and enhances self-paced rowing performance in elite rowers. MS Thesis. <https://dspace.library.uvic.ca:8443/bitstream/1828/55/1/Ejohnsonthesis.pdf>. Victoria; University of Victoria, BC 2005 35: 114
  • 11 Mahler D A, Hunter B, Lentine T, Ward J. Locomotor-respiratory coupling develops in novice female rowers with training.  Med Sci Sports Exerc. 1991;  23 1362-1366
  • 12 Mahler D A, Shuhart C R, Brew E, Stukel T A. Ventilatory responses and entrainment of breathing during rowing.  Med Sci Sports Exerc. 1991;  23 186-193
  • 10 Mandic S, Quinney H A, Bell G J. Modification of the Wingate anaerobic power test for rowing: optimization of the resistance setting.  Int J Sports Med. 2004;  25 409-414
  • 13 Mavrommataki E, Bogdanis G C, Kaloupsis S, Maridaki M. Recovery of power output and heart rate kinetics during repeated bouts of rowing exercise with different rest intervals.  J Sports Sci Med. 2006;  5 155-122
  • 14 McNeely E. Training for Rowing. Ottawa; Sport Performance Institute 2000: 59-64
  • 15 O'Neill T, Skelton A. Indoor Rowing Training Guide. Nottingham, UK; Concept2 Ltd 2004 Appendix vii-ix
  • 16 Perkins C D, Pivarnik J M. Physiological profiles and performance predictors of a women's NCAA rowing team.  J Strength Cond Res. 2003;  17 173-176
  • 17 Reid D A, McNair P J. Factors contributing to low back pain in rowers.  Br J Sports Med. 2000;  34 321-322
  • 18 Shephard R J. Science and medicine of rowing: a review.  J Sports Sci. 1998;  16 603-620
  • 19 Steinacker J M, Both M, Whipp B J. Pulmonary mechanics and entrainment of respiration and stroke rate during rowing.  Int J Sports Med. 1993;  14 S15-S19
  • 21 Teitz C C, O'Kane J, Lind B K, Hannafin J A. Back pain in intercollegiate rowers.  Am J Sports Med. 2002;  30 674-679
  • 20 Weltman A. The Blood Lactate Response to Exercise. Champaign, IL; Human Kinetics 1995 3: 34-41
  • 22 Womack C J, Davis S E, Wood C M, Sauer K, Alvarez J, Weltman A, Gaesser G. Effects of training on physiological correlates of rowing ergometry performance.  J Strength Cond Res. 1996;  10 234-238

 Mr.
Daniel Alan Kane

Department of Health, Physical Education and Recreation
Northern Michigan University

1401 Presque Isle Ave.

Marquette, MI 49855

United States

Email: dkane@nmu.edu