Int J Sports Med 2008; 29(4): 289-293
DOI: 10.1055/s-2007-965363
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Acute Resistance Exercise Reduces Heart Rate Complexity and Increases QTc Interval

K. S. Heffernan1 , J. J. Sosnoff2 , S. Y. Jae1 , G. J. Gates3 , B. Fernhall4
  • 1Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
  • 2Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
  • 3Center for Chest Disease, Columbia University Medical Center, New York, NY, United States
  • 4College of Applied Health Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, United States
Weitere Informationen

Publikationsverlauf

accepted after revision March 27, 2007

Publikationsdatum:
13. September 2007 (online)

Abstract

Acute resistance exercise (RE) has been shown to reduce cardiac vagal control. Whether this would in turn affect QTc interval (an index of ventricular depolarization/repolarization) or heart rate complexity is not known. Heart rate variability (HRV), heart rate complexity (SampEn), and QT interval (rate corrected using Bazett, Fridericia, Hodges, and Framingham) were measured before and 5 min after an acute RE bout in twelve healthy young men. Normalized high frequency power of HRV (an index of cardiac parasympathetic modulation; HFnu), and SampEn were reduced following RE (p < 0.05). Bazett corrected QTc interval increased following RE (p < 0.05). Change in HFnu from rest to recovery was correlated with both change in SampEn (r = 0.51, p < 0.05) and change in QTc interval for each method of correction (r = - 0.67 to - 0.70, p < 0.05). Acute RE reduced HF spectral power of HRV and this was related to both reduced heart rate complexity and increased QTc length. Thus, during recovery from acute RE, there is prolongation of depolarization and repolarization of the ventricles concomitant with reduced cardiac irregularity, and this may be related to a reduction in cardiac vagal control.

References

  • 1 Ahnve S, Vallin H. Influence of heart rate and inhibition of autonomic tone on the QT interval.  Circulation. 1982;  65 435-439
  • 2 Albert C M, Mittleman M A, Chae C U, Lee I M, Hennekens C H, Manson J E. Triggering of sudden death from cardiac causes by vigorous exertion.  N Engl J Med. 2000;  343 1355-1361
  • 3 Annila P, Yli-Hankala A, Lindgren L. Effect of atropine on the QT interval and T-wave amplitude in healthy volunteers.  Br J Anaesth. 1993;  71 736-737
  • 4 Bacaner M, Brietenbucher J, LaBree J. Prevention of ventricular fibrillation, acute myocardial infarction (myocardial necrosis), heart failure, and mortality by bretylium: is ischemic heart disease primarily adrenergic cardiovascular disease?.  Am J Ther. 2004;  11 366-411
  • 5 Beckers F, Verheyden B, Aubert A E. Aging and nonlinear heart rate control in a healthy population.  Am J Physiol. 2006;  290 H2560-2570
  • 6 Beckers F, Verheyden B, Ramaekers D, Swynghedauw B, Aubert A E. Effects of autonomic blockade on non-linear cardiovascular variability indices in rats.  Clin Exp Pharmacol Physiol. 2006;  33 431-439
  • 7 Benoit S R, Mendelsohn A B, Nourjah P, Staffa J A, Graham D J. Risk factors for prolonged QTc among US adults: Third National Health and Nutrition Examination Survey.  Eur J Cardiovasc Prev Rehabil. 2005;  12 363-368
  • 8 Browne K F, Prystowsky E, Heger J J, Zipes D P. Modulation of the Q-T interval by the autonomic nervous system.  Pacing Clin Electrophysiol. 1983;  6 1050-1056
  • 9 Cappato R, Alboni P, Pedroni P, Gilli G, Antonioli G E. Sympathetic and vagal influences on rate-dependent changes of QT interval in healthy subjects.  Am J Cardiol. 1991;  68 1188-1193
  • 10 De Meersman R E. Heart rate variability and aerobic fitness.  Am Heart J. 1993;  125 726-731
  • 11 Diedrich A, Jordan J, Shannon J R, Robertson D, Biaggioni I. Modulation of QT interval during autonomic nervous system blockade in humans.  Circulation. 2002;  106 2238-2243
  • 12 Harada T, Abe J, Shiotani M, Hamada Y, Horii I. Effect of autonomic nervous function on QT interval in dogs.  J Toxicol Sci. 2005;  30 229-237
  • 13 Heffernan K S, Kelly E E, Collier S R, Fernhall B. Cardiac autonomic modulation during recovery from endurance versus resistance exercise.  Eur J Cardiovasc Prev Rehabil. 2006;  3 80-86
  • 14 Indik J H, Pearson E C, Fried K, Woosley R L. Bazett and Fridericia QT correction formulas interfere with measurement of drug-induced changes in QT interval.  Heart Rhythm. 2006;  3 1003-1007
  • 15 Kautzner J, Yi G, Camm A J, Malik M. Short- and long-term reproducibility of QT, QTc, and QT dispersion measurement in healthy subjects.  Pacing Clin Electrophysiol. 1994;  17 928-937
  • 16 Kuusela T A, Jartti T T, Tahvanainen K U, Kaila T J. Nonlinear methods of biosignal analysis in assessing terbutaline-induced heart rate and blood pressure changes.  Am J Physiol. 2002;  282 H773-H783
  • 17 Kuusela T A, Jartti T T, Tahvanainen K U, Kaila T J. Prolongation of QT interval by terbutaline in healthy subjects.  J Cardiovasc Pharmacol. 2005;  45 175-181
  • 18 Lecocq B, Lecocq V, Jaillon P. Physiologic relation between cardiac cycle and QT duration in healthy volunteers.  Am J Cardiol. 1989;  64 481-486
  • 19 Lipsitz L A. Age-related changes in the “complexity” of cardiovascular dynamics: A potential marker of vulnerability to disease.  Chaos. 1995;  5 102-109
  • 20 Magnano A R, Holleran S, Ramakrishnan R, Reiffel J A, Bloomfield D M. Autonomic nervous system influences on QT interval in normal subjects.  J Am Coll Cardiol. 2002;  39 1820-1826
  • 21 Melanson E L. Resting heart rate variability in men varying in habitual physical activity.  Med Sci Sports Exerc. 2000;  32 1894-1901
  • 22 Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone S, Malfatto G, Dell'Orto S, Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog.  Circ Res. 1986;  59 178-193
  • 23 Palatini P, Maraglino G, Sperti G, Calzavara A, Libardoni M, Pessina A C, Dal Palu C. Prevalence and possible mechanisms of ventricular arrhythmias in athletes.  Am Heart J. 1985;  110 560-567
  • 24 Palazzolo J A, Estafanous F G, Murray P A. Entropy measures of heart rate variation in conscious dogs.  Am J Physiol. 1998;  274 H1099-H1105
  • 25 Pollock M L, Franklin B A, Balady G J, Chaitman B L, Fleg J L, Fletcher B, Limacher M, Pina I L, Stein R A, Williams M, Bazzarre T. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: an advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; position paper endorsed by the American College of Sports Medicine.  Circulation. 2000;  101 828-833
  • 26 Rezk C C, Marrache R C, Tinucci T, Mion Jr D, Forjaz C L. Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity.  Eur J Appl Physiol. 2006;  98 105-112
  • 27 Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy.  Am J Physiol. 2000;  278 H2039-2049
  • 28 Sandercock G R, Bromley P D, Brodie D A. The reliability of short-term measurements of heart rate variability.  Int J Cardiol. 2005;  103 238-247
  • 29 Shin D G, Yoo C S, Yi S H, Bae J H, Kim Y J, Park J S, Hong G R. Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R‐R interval dynamics before the spontaneous onset of atrial fibrillation.  Circ J. 2006;  70 94-99
  • 30 Smith L L, Kukielka M, Billman G E. Heart rate recovery following exercise: a predictor of ventricular fibrillation susceptibility after myocardial infarction.  Am J Physiol. 2005;  288 H1763-1769
  • 31 Straus S M, Kors J A, De Bruin M L, van der Hooft C S, Hofman A, Heeringa J, Deckers J W, Kingma J H, Sturkenboom M C, Stricker B H, Witteman J C. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults.  J Am Coll Cardiol. 2006;  47 362-367
  • 32 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology . Heart rate variability: standards of measurement, physiological interpretation, and clinical use.  Eur Heart J. 1996;  17 354-381
  • 33 Turkmen M, Barutcu I, Esen A M, Ocak Y, Melek M, Kaya D, Karakaya O, Saglam M, Basaran Y. Assessment of QT interval duration and dispersion in athlete's heart.  J Int Med Res. 2004;  32 626-632
  • 34 Tuzcu V, Nas S, Borklu T, Ugur A. Decrease in the heart rate complexity prior to the onset of atrial fibrillation.  Europace. 2006;  8 398-402
  • 35 Vaidean G D, Schroeder E B, Whitsel E A, Prineas R J, Chambless L E, Perhac J S, Heiss G, Rautaharju P M. Short-term repeatability of electrocardiographic spatial T-wave axis and QT interval.  J Electrocardiol. 2005;  38 139-147
  • 36 Vikman S, Makikallio T H, Yli-Mayry S, Pikkujamsa S, Koivisto A M, Reinikainen P, Airaksinen K E, Huikuri H V. Altered complexity and correlation properties of R‐R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation.  Circulation. 1999;  100 2079-2084
  • 37 Wu Z K, Vikman S, Laurikka J, Pehkonen E, Iivainen T, Huikuri H V, Tarkka M R. Nonlinear heart rate variability in CABG patients and the preconditioning effect.  Eur J Cardiothorac Surg. 2005;  28 109-113

 Mr.
Kevin Scott HeffernanMS 

Department of Kinesiology and Community Health
Exercise and Cardiovascular Research Lab
Rehabilitation Education Center
University of Illinois at Urbana-Champaign

1207 S. Oak St.

Champaign, IL 61820

United States

Telefon: + 1 21 76 21 89 00

Fax: + 1 21 73 33 04 04

eMail: kheffer2@uiuc.edu