Abstract
Heart transplantation is currently the treatment of first choice in patients with
end-stage refractory heart failure. But already the demand for donor organs cannot
be met, and patients face long waiting times for transplantation. In the future waiting
times will become even longer as life expectancy increases and the number of heart-failure
patients requiring transplantation grows. Consequently, in view of the poor prognosis
of the disease in its advanced stages, alternatives to heart transplantation are increasingly
gaining importance. In recent years new innovative treatment methods and techniques
have been developed which have already proved clinically successful in patients with
end-stage heart failure, especially as bridging measures. Some of these techniques
appear suitable for long-term use and could therefore serve as an alternative to heart
transplantation in some patients. Interesting new avenues of research may even lead
to cardiac cell replacement therapies in the future. These approaches are currently
undergoing initial clinical trials. This report presents surgical and cardiologic
treatments for end-stage heart failure that have already been clinically investigated
as well as techniques that are still in the preclinical stage and discusses their
potential as alternatives to heart transplantation.
References
1
Hoppe. et al .
Guidelines for the treatment of chronic heart failure. Issued by the Executive Committee
of the German Society of Cardiology - Heart and Circulation Research, compiled on
behalf of the Clinical Cardiology Committee in cooperation with the Drug Committee
of the German Physicians' Association.
Z Kardiol.
2001;
90
218-237
2
Hunt S A. et al .
ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure
in the adult: a report of the American College of Cardiology/American Heart Association
Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines
for the Evaluation and Management of Heart Failure).
J Am Coll Cardiol.
2005;
46
e1-e82
3
Haas F. et al .
Preoperative positron emission tomographic viability assessment and perioperative
and postoperative risk in patients with advanced ischemic heart disease.
J Am Coll Cardiol.
1997;
30
1693-1700
4
Appoo J. et al .
Long-term outcome of isolated coronary artery bypass surgery in patients with severe
left ventricular dysfunction.
Circulation.
2004;
110 (Suppl 1)
II13-II17
5
Trachiotis G D. et al .
Coronary artery bypass grafting in patients with advanced left ventricular dysfunction.
Ann Thorac Surg.
1998;
66
1632-1639
6
Kleikamp G. et al .
Determinants of mid- and long-term results in patients after surgical revascularization
for ischemic cardiomyopathy.
Ann Thorac Surg.
2004;
78
1515-1516
7
DeRose Jr J J. et al .
Preoperative prediction of long-term survival after coronary artery bypass grafting
in patients with low left ventricular ejection fraction.
J Thorac Cardiovasc Surg.
2005;
129
314-321
8
Yau T M. et al .
Predictors of operative risk for coronary bypass operations in patients with left
ventricular dysfunction.
J Thorac Cardiovasc Surg.
1999;
118
1006-1013
9
Bolling S F.
Mitral reconstruction in cardiomyopathy.
J Heart Valve Dis.
2002;
11 (Suppl 1)
S26-S31
10
Seipelt R G. et al .
Downsizing of the mitral valve and coronary revascularization in severe ischemic mitral
regurgitation results in reverse left ventricular and left atrial remodeling.
Eur J Cardiothorac Surg.
2001;
20
270-275
11
Geidel S. et al .
Coronary artery bypass grafting in patients with advanced left ventricular dysfunction.
Eur J Cardiothorac Surg.
2005;
27
1011-1016
12
Grossi E A. et al .
Ischemic mitral valve reconstruction and replacement: comparison of long-term survival
and complications.
J Thorac Cardiovasc Surg.
2001;
122
1107-1124
13
Haan C K. et al .
Selecting patients with mitral regurgitation and left ventricular dysfunction for
isolated mitral valve surgery.
Ann Thorac Surg.
2004;
78
820-825
14
Bishay E S. et al .
Mitral valve surgery in patients with severe left ventricular dysfunction.
Eur J Cardiothorac Surg.
2000;
17
213-221
15
Gummert J F. et al .
Mitral valve repair in patients with end stage cardiomyopathy: who benefits?.
Eur J Cardiothorac Surg.
2003;
23
1017-1022
16
Kass D A. et al .
Reverse remodeling from cardiomyoplasty in human heart failure. External constraint
versus active assist.
Circulation.
1995;
91
2314-2318
17
Patel H J. et al .
Stabilization of chronic remodeling by asynchronous cardiomyoplasty in dilated cardiomyopathy:
effects of a conditioned muscle wrap.
Circulation.
1997;
96
3665-3671
18
Power J M. et al .
Passive ventricular constraint is a trigger for a significant degree of reverse remodeling
in an experimental model of degenerative heart failure and dilated cardiomyopathy.
Circulation.
2000;
102 (Suppl)
II501
19
Sabah H N. et al .
Reversal of chronic molecular and cellular abnormalities due to heart failure by passive
mechanical ventricular containment.
Circ Res.
2003;
93
1095-1101
20
Konertz W F. et al .
Passive containment and reverse remodeling by a novel textile cardiac support device.
Circulation.
2001;
104 (12 Suppl 1)
I270-I275
21 Aranda J M. et al .Predictors of Hospital Length of Stay in a Surbical Approach
to the Failing Heart: The ACORN Cardiac Support Device Randomized Trial Experience.
2004 HF Society of America poster presentation Sept 13, 2004.
22
White H D. et al .
Left ventricular end-systolic volume as the major determinant of survival after recovery
from myocardial infarction.
Circulation.
1987;
76
44-51
23
Yamaguchi A. et al .
Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy.
Ann Thorac Surg.
1998;
65
434-438
24
Gaudron P. et al .
Time course of cardiac structural, functional and electrical changes in asymptomatic
patients after myocardial infarction: their interrelation and prognostic impact.
J Am Coll Cardiol.
2001;
38
33-40
25
Di Donato M. et al .
Intermediate survival and predictors of death after surgical ventricular restoration.
Semin Thorac Cardiovasc Surg 2001; 13: 468-475.
Erratum in: Semin Thorac Cardiovasc Surg.
2004;
16
113
26
Athanasuleas C L. et al .
Surgical ventricular restoration in the treatment of congestive heart failure due
to post-infarction ventricular dilation.
J Am Coll Cardiol.
2005;
46
1439-1445
27
Yamaguchi A. et al .
Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy.
Ann Thorac Surg.
2005;
79
456-461
28
Rose E A. et al .
Long-term mechanical left ventricular assistance for end-stage heart failure.
N Engl J Med.
2001;
345
1435-1443
29
Stevenson L W. et al .
Left ventricular assist device as destination for patients undergoing intravenous
inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical
Assistance in Treatment of Chronic Heart Failure).
Circulation.
2004;
110
975-981
30
Dembitsky W P. et al .
Left ventricular assist device performance with long-term circulatory support: lessons
from the REMATCH trial.
Ann Thorac Surg.
2004;
78
2123-2129
31 Healy A H. et al .Improved Outcomes in Destination Therapy LvAD Patients: A Single
Experience. 31st Abstract presented at the Annual Meeting of the Western Thoracic
Surgical Association (WTSA), Victoria, British Columbia 2005.
32
Pae W E. et al .
Initial European experience with the LionHeart(TM) LVAS (left ventricular assist system) for destination therapy. 23rd Annual Meeting
and Scientific Sessions of the International Society for Heart and Lung Transplantation,
Wien 2003.
J Heart Lung Transplant.
2003;
22 (1S)
S83
33
Jurmann M J. et al .
Permanent mechanical circulatory support in patients of advanced age.
Eur J Cardiothorac Surg.
2004;
25
610-618
34
El-Banayosy. et al .
CardioWest total artificial heart: Bad Oeynhausen experience.
Ann Thorac Surg.
2005;
80
548-552
35
Copeland J G. et al .
Cardiac replacement with a total artificial heart as a bridge to transplantation.
N Engl J Med.
2004;
351
859-867
36
Shamim W. et al .
Incremental changes in QRS duration in serial ECGs over time riidentify high-risk
elderly patients with heart failure.
Heart.
2002;
88
47-51
37
Faber L. et al .
Analysis of inter- and intraventricular asynchrony by tissue Doppler echocardiography.
Z Kardiol.
2003;
92
994-1002
38
Anderson K P. et al .
Electrocardiographic predictors in the ESVEM trial: unsustained ventricular tachycardia,
heart period variability, and the signal-averaged electrocardiogram.
Prog Cardiovasc Dis.
1996;
38
463-488
39
Silverman M E. et al .
Prognostic value of the signal-averaged electrocardiogram and a prolonged QRS in ischemic
and nonischemic cardiomyopathy.
Am J Cardiol.
1995;
75
460-464
40
Schoeller R. et al .
First- or second-degree atrioventricular block as a risk factor in idiopathic dilated
cardiomyopathy.
Int J Cardiol.
1993;
71
720-726
41
Gottipaty V K.
The resting electrocardiogram provides a sensitive and inexpensive marker of prognosis
in patients with chronic heart failure. (Abstract 847-4).
J Am Coll Cardiol.
1999;
33
145A
42
Auricchio A. et al .
The pacing therapies for congestive heart failure (PATH‐CHF) study: rationale, design,
and endpoints of a prospecitve randomized multicenter study.
Am J Cardiol.
1999;
83
130D-135D
43
Abraham W T. et al .
For the MIRACLE study group. Cardiac resynchronization in chronic heart failure.
N Engl J Med.
2002;
346
1845-1853
44
Gras D. et al .
Multisite pacing as a supplemental treatment of congestive heart failure: preliminary
results of the Medtronic Inc. InSync Study.
Pacing Clin Electrophysiol.
1998;
21
2249-2255
45
Leclerq C. et al .
Comparative effects of permanent biventricular and right-univentricular pacing in
heart failure patients with chronic atrial fibrillation.
Eur Heart J.
2002;
23
1780-1787
46
Cleland J G. et al .
The effect of cardiac resynchronization on morbidity and mortality in heart failure.
N Engl J Med.
2005;
352
1539-1549
47
Cleland J G, Daubert J C, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L.
Longer-term effects of cardiac resynchronization therapy on mortality in heart failure
(the CArdiac REsynchronization - Heart Failure [CARE‐HF] trial extension phase).
Eur Heart J.
2006;
27
1928-1932
48
Bristow M R. et al .
Cardiac-resynchronization therapy with or without an implantable defibrillator in
advanced chronic heart failure.
N Engl J Med.
2004;
350
2140-2150
49
Moss A J, Zareba W, Hall W J. et al .
Prophylactic implantation of a defibrillator in patients with myocardial infarction
and reduced ejection fraction.
N Engl J Med.
2002;
346
877-883
50
Bardy G H. et al .
Amiodarone or an implantable cardiodeverter-defibrillator for congestive heart failure.
N Engl J Med.
2005;
352
225-237
51
Nieminen M S. et al .
Executive summary of the guidelines on the diagnosis and treatment of acute heart
failure: the Task Force on Acute Heart Failure of the European Society of Cardiology.
Eur Heart J.
2005;
26
384-416
52
Follath F. et al .
Efficacy and safety of intravenous levosimendan compared with dobutamine in severe
low-output heart failure (the LIDO study): a randomised double-blind trial.
Lancet.
2002;
360
196-202
53
Cleland J GF. et al .
Clinical trials update and cumulative meta-analyses from the American College of Cardiology:
WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS‐US, RIO-Lipids and cardiac resynchronisation
therapy in heart failure.
Eur J Heart Fail.
2004;
6
501-508
54 Packer M. REVIVE II: Multicenter placebo-controlled trial of levosimendan on clinical
statuts in acutely decompensated heart failure. Dallas, TX: American Heart Association
Scientific Sessions, November 13 - 16, 2005.
55 Mebazaa A. he SURVIVE trial: comparison of dobutamine and levosimendan on survival
in acute decompensated heart failure. Dallas, TX: American Heart Association Scientific
Sessions, November 13 - 16, 2005.
56
Colucci W S. et al .
Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive
heart failure. Nesiritide Study Group.
N Engl J Med.
2000;
343
246-253
57
Publication Committee for the VMAC Investigators (Vasodilatation in the Management
of Acute CHF) .
Intravenous nesiritide vs. nitroglycerin for treatment of decompensated congestive
heart failure: a randomized controlled trial.
JAMA.
2002;
287
1531-1540
58
Sackner-Bernstein J D. et al .
Short-term risk of death after treatment with nesiritide for decompensated heart failure:
a pooled analysis of randomized controlled trials.
JAMA.
2005;
293
1900-1905
59
Pouzet B. et al .
Is skeletal myoblast transplantation clinically relevant in the era of angiotensin-converting
enzyme inhibitors?.
Circulation.
2001;
104
223-228
60
Jain M. et al .
Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance
after myocardial infarction.
Circulation.
2001;
104
1920-1927
61
Ghostine S. et al .
Long-term efficacy of myoblast transplantation on regional structure and function
after myocardial infarction.
Circulation.
2002;
106
131-136
62
Menasche P. et al .
Myoblast transplantation for heart failure.
Lancet.
2001;
357
279-280
63
Menasche P. et al .
Autologous skeletal myoblast transplantation for severe postinfarction left ventricular
dysfunction.
J Am Coll Cardiol.
2004;
41
1078-1083
64
Hagege A A. et al .
Viability and differentiation of autologous skeletal myoblast grafts in ischaemic
cardiomyopathy.
Lancet.
2004;
361
491-492
65
Orlic D. et al .
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
701-705
66
Murry C E. et al .
Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial
infarcts.
Nature.
2004;
428
664-668
67
Kajstura. et al .
Bone marrow cells differentiate in cardiac cell lineages after infarction independently
of cell fusion.
Circ Res.
2005;
96
127-137
68
Tomita S. et al .
Improved heart function with myogenesis and angiogenesis after autologous porcine
bone marrow stromal cell transplantation.
J Thorac Cardiovasc Surg.
2002;
123
1132-1140
69
Ma N. et al .
Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice.
Cardiovasc Res.
2005;
66
45-54
70
Hagege A A. et al .
Viability and differentiation of autologous skeletal myoblast grafts in ischaemic
cardiomyopathy.
Lancet.
2004;
361
491-492
71
Beltrami A P. et al .
Adult cardiac stem cells are multipotent and support myocardial regeneration.
Cell.
2003;
114
763-766
72
Urbanek K. et al .
Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy.
Proc Natl Acad Sci USA.
2003;
100
10440-10450
73
Stamm C. et al .
Autologous bone-marrow stem-cell transplantation for myocardial regeneration.
Lancet.
2003;
361
45-46
74
Stamm C. et al .
CABG and bone marrow stem cell transplantation after myocardial infarction.
Thorac Cardiovasc Surg.
2004;
52
152-158
75
Wollert K C, Meyer G P, Lotz J. et al .
Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the
BOOST randomised controlled clinical trial.
Lancet.
2004;
364
141-148
76
Strauer B E, Brehm M, Zeus T. et al .
Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow
cell transplantation in humans.
Circulation.
2002;
106
1913-1918
77
Schachinger V, Assmus B, Britten M B. et al .
Transplantation of progenitor cells and regeneration enhancement in acute myocardial
infarction: final one-year results of the TOPCARE‐AMI Trial.
J Am Coll Cardiol.
2004;
44
1690-1699
78
Meyer G P, Wollert K C, Lotz J. et al .
Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months'
follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance
ST-elevation infarct regeneration) trial.
Circulation.
2006;
113
1287-1294
79
Schachinger V, Erbs S, Elsasser A. et al .
Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.
N Engl J Med.
2006;
355
1210-1221
80
Assmus B, Honold J, Schachinger V. et al .
Transcoronary transplantation of progenitor cells after myocardial infarction.
N Engl J Med.
2006;
355
1222-1232
81
Assmus B, Schachinger V, Teupe C. et al .
Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial
Infarction (TOPCARE‐AMI).
Circulation.
2002;
106
3009-3017
82
Hofmann M, Wollert K C, Meyer G P. et al .
Monitoring of bone marrow cell homing into the infarcted human myocardium.
Circulation.
2005;
111
2198-2202
83
Janssens S, Dubois C, Bogaert J. et al .
Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation
myocardial infarction: double-blind, randomised controlled trial.
Lancet.
2006;
367
113-121
84
Lunde K, Solheim S, Aakhus S. et al .
Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.
N Engl J Med.
2006;
355
1199-1209
85
Penn M S.
Stem-cell therapy after acute myocardial infarction: the focus should be on those
at risk.
Lancet.
2006;
367
87-88
86
Rosenzweig A.
Cardiac cell therapy-mixed results from mixed cells.
N Engl J Med.
2006;
355
1274-1277
87
Orlic D, Kajstura J, Chimenti S. et al .
Mobilized bone marrow cells repair the infarcted heart, improving function and survival.
Proc Natl Acad Sci USA.
2001;
98
10344-10349
88
Ohtsuka M, Takano H, Zou Y. et al .
Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial
infarction through neovascularization.
FASEB J.
2004;
18
851-853
89
Minatoguchi S, Takemura G, Chen X H. et al .
Acceleration of the healing process and myocardial regeneration may be important as
a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte
colony-stimulating factor treatment.
Circulation.
2004;
109
2572-2580
90
Harada M, Qin Y, Takano H. et al .
G‐CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat
pathway in cardiomyocytes.
Nat Med.
2005;
11
305-311
91
Deindl E, Zaruba M M, Brunner S. et al .
G‐CSF administration after myocardial infarction in mice attenuates late ischemic
cardiomyopathy by enhanced arteriogenesis.
FASEB J.
2006;
20
956-958
92
Kocher A A, Schuster M D, Szabolcs M J. et al .
Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts
prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.
Nat Med.
2001;
7
430-436
93
Kuhlmann M T, Kirchhof P, Klocke R. et al .
G‐CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased
connexin43 expression and arteriogenesis.
J Exp Med.
2006;
203
87-97
94
Valgimigli M, Rigolin G M, Cittanti C. et al .
Use of granulocyte-colony stimulating factor during acute myocardial infarction to
enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety
profile.
Eur Heart J.
2005;
26
1838-1845
95
Ince H, Petzsch M, Kleine H D. et al .
Preservation from left ventricular remodeling by front-integrated revascularization
and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating
factor (FIRSTLINE‐AMI).
Circulation.
2005;
112
3097-3106
96
Engelmann M G, Theiss H D, Hennig-Theiss C. et al .
Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating
factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization:
final results from the G‐CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment
Elevation Myocardial Infarction) trial.
J Am Coll Cardiol.
2006;
48
1712-1721
97
Ripa R S, Jorgensen E, Wang Y. et al .
Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor
to improve cardiac regeneration after acute ST-elevation myocardial infarction: result
of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction
(STEMMI) trial.
Circulation.
2006;
113
1983-1992
98
Zohlnhofer D, Ott I, Mehilli J. et al .
Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute
myocardial infarction: a randomized controlled trial.
JAMA.
2006;
295
1003-1010
99
Nir S G, David R, Zaruba M. et al .
Human embryonic stem cells for cardiovascular repair.
Cardiovasc Res.
2003;
58
313-323
100
Kehat I, Kenyagin-Karsenti D, Snir M. et al .
Human embryonic stem cells can differentiate into myocytes with structural and functional
properties of cardiomyocytes.
J Clin Invest.
2001;
108
407-414
101
Maitra A, Arking D E, Shivapurkar N. et al .
Genomic alterations in cultured human embryonic stem cells.
Nat Genet.
2005;
37
1099-1103
102
Xiao Y F, Min J Y, Morgan J P.
Immunosuppression and xenotransplantation of cells for cardiac repair.
Ann Thorac Surg.
2004;
77
737-744
103
Zhang Y M, Hartzell C, Narlow M. et al .
Stem cell-derived cardiomyocytes demonstrate arrhythmic potential.
Circulation.
2002;
106
1294-1299
104
David R, Groebner M, Franz W M.
Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing
truncated human CD4 as surface marker.
Stem Cells.
2005;
23
477-482
105
Muller M, Fleischmann B K, Selbert S. et al .
Selection of ventricular-like cardiomyocytes from ES cells in vitro .
FASEB J.
2000;
14
2540-2548
106
Kofidis T. et al .
In vitro engineering of heart muscle: artificial myocardial tissue.
J Thorac Cardiovasc Surg.
2002;
124
63-69
107
Ley R. et al .
A xenogeneic acellularized matrix for heart valve tissue engineering: in vivo study in a sheep model.
Z Kardiol.
2003;
92
938-946
108
EBailey L L. et al .
Baboon-to-human cardiac xenotransplantation in a neonate.
JAMA.
1985;
254
3321-3329
109
Schmoeckel M. et al .
Transplanting organs from pigs transgenic for a single human complement regulatory
protein.
Graft.
2001;
4
66-67
110
Brandl U. et al .
Administration of GAS914 in an orthotopic pig-to-baboon heart transplantation model.
Xenotransplantation.
2005;
12
134-141
111
Kuwaki K. et al .
Heart transplantation in baboons using alpha 1, 3-galactosyltransferase gene-knockout
pigs as donors: initial experience.
Nat Med.
2005;
11
29-31
112
McGregor C G. et al .
Cardiac xenotransplantation: recent preclinical progress with 3-month median survival.
J Thorac Cardiovasc Surg.
2005;
130
844-851
113
Fishman J A. et al .
Xenotransplantation: infectious risk revisited.
Am J Transplant.
2004;
4
1383-1390
PD Dr. M. Strüber
Herz-, Thorax-, Transplantations- und Gefäßchirurgie Medizinische Hochschule Hannover
Carl-Neuberg-Straße 1
30625 Hannover
Germany
Email: strueber.martin@mh-hannover.de