Abstract
Evidence from field experiments indicates differential roles of sulfur and nitrogen
supply for plant resistance against pathogens. Dissection of these observations in
defined pathosystems and controlled nutritional conditions indicates an activation
of plant sulfur metabolism in several incompatible and compatible interactions. Contents
of cysteine and glutathione as markers of primary sulfate assimilation and stress
response show increases in Arabidopsis thaliana upon infection, coinciding with the synthesis of sulfur-containing defence compounds.
Similar increases of thiols were observed with necrotrophic, biotrophic, and hemibiotrophic
pathogens. Sulfate supply was found to be neutral or beneficial for tolerance against
fungal but neutral for bacterial pathogens under in vitro conditions. According to various reports and own observations the effects of nitrogen
supply appeared to be neutral or harmful, depending on the pathogen. The activation
of sulfur metabolism was a consequence of activation of gene expression as revealed
by macroarray analysis of an A. thaliana/Alternaria brassicicola pathosystem. This activation appeared to be largely independent from sufficient or
optimal sulfate supply and from the established sulfate deficiency response. The data
suggest that plant-pathogen interactions and sulfur metabolism are linked by jasmonic
acid as signal.
Key words
Sulfur nutrition - sulfur metabolism - pathogen resistance -
Arabidopsis
- glutathione - expression profiling - glucosinolates - thionin
References
- 1
Almeida M. S., Cabral K. M., Kurtenbach E., Almeida F. C., Valente A. P..
Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different
mechanisms of action.
Journal of Molecular Biology.
(2002);
315
749-757
- 2
Anderson J. P., Badruzsaufari E., Schenk P. M., Manners J. M., Desmond O. J., Ehlert C.,
Maclean D. J., Ebert P. R., Kazan K..
Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways
modulates defense gene expression and disease resistance in Arabidopsis.
Plant Cell.
(2004);
16
3460-3479
- 3
Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P..
Signaling in plant-microbe interactions.
Science.
(1997);
276
726-733
- 4
Ball L., Accotto G.-P., Bechtold U., Creissen G., Funck D., Jimenez A., Kular B.,
Leyland N., Mejia-Carranza J., Reynolds H., Karpinski S., Mullineaux P. M..
Evidence for a direct link between glutathione biosynthesis and stress defense gene
expression in Arabidopsis.
Plant Cell.
(2004);
16
2448-2462
- 5
Blake-Kalff M. M., Harrison K. R., Hawkesford M. J., Zhao F. J., McGrath S. P..
Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency
during vegetative growth.
Plant Physiology.
(1998);
118
1337-1344
- 6
Bloem E., Haneklaus S., Schnug E..
Significance of sulfur compounds in the protection of plants against pests and diseases.
Journal of Plant Nutrition.
(2005);
28
763-784
- 7
Bloem E., Haneklaus S., Salac I., Wickenhäuser P., Schnug E..
Facts and fiction about sulfur metabolism in relation to plant-pathogen interactions.
Plant Biology.
(2007);
9
596-607
- 8
Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I., Haneklaus S.,
Schnug E..
Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L.
Journal of Experimental Botany.
(2004);
55
2305-2312
- 9 Bohlmann H..
The role of thionins in the resistance of plants. Datta, S. K. and Muthukrishnan, S., eds. Pathogenesis-Related Proteins in Plants. Boca
Raton, London, New York, Washington DC; CRC Press (1999): 207-234
- 10
Bohlmann H., Apel K..
Thionins.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1991);
42
227-240
- 11
Brader G., Mikkelsen M., Halkier B., Tapio Palva E..
Altering glucosinolate profiles modulates disease resistance in plants.
The Plant Journal.
(2006);
46
758-767
- 12
Carmona M. J., Molina A., Fernandez J. A., Lopez-Fando J. J., Garcia-Olmedo F..
Expression of the alpha-thionin gene from barley in tobacco confers enhanced resistance
to bacterial pathogens.
The Plant Journal.
(1993);
3
457-462
- 13
Collins N., Thordal-Christens H., Lipka V., Bau S., Kombrink E., Qiu J., Huckelhoven R.,
Stein M., Freialdenhoven A., Somerville S., Schulze-Lefert P..
SNARE-protein-mediated disease resistance at the plant cell wall.
Nature.
(2003);
425
973-977
- 14 Da Silva Conceicao A., Broekaert W..
Plant defensins. Datta, S. K. and Muthukrishnan, S., eds. Pathogenesis-Related Proteins in Plants. Boca
Raton, London, New York, Washington DC; CRC Press (1999): 247-260
- 15
Dietrich R., Ploss K., Heil M..
Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply.
Plant, Cell and Environment.
(2004);
27
896-906
- 16
Dubuis P.-H., Marazzi C., Städler E., Mauch F..
Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased
disease susceptibility of oilseed rape.
Journal of Phytopathology.
(2005);
153
27-36
- 17
Epple P., Apel K., Bohlmann H..
Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum.
Plant Cell.
(1997 a);
9
509-520
- 18
Epple P., Apel K., Bohlmann H..
ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana.
FEBS Letters.
(1997 b);
400
168-172
- 19
Florack D. E., Stiekema W. J..
Thionins: properties, possible biological roles and mechanisms of action.
Plant Molecular Biology.
(1994);
26
25-37
- 20
Foyer C. H., Noctor G..
Redox homeostasis and antioxidant signaling: a metabolic interface between stress
perception and physiological responses.
Plant Cell.
(2005);
17
1866-1875
- 21
Garcia-Olmedo F., Rodriguez-Palenzuela P., Hernandez-Lucas C., Ponz F., Marana C.,
Carmona M. J., Lopez-Fando J. J., Fernandez J. A., Carbonero P..
The Thionins: a protein family that includes purothionins, viscotoxins and crambins.
Oxford Surveys of Plant Molecular and Cell Biology.
(1989);
6
31-60
- 22
Garcia-Olmedo F., Molina A., Alamillo J. M., Rodriguez-Palenzuela P..
Plant defense peptides.
Biopolymers.
(1998);
47
479-491
- 23
Glawischnig E., Hansen B. G., Olsen C. E., Halkier B. A..
Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between
primary and secondary metabolism in Arabidopsis.
Proceedings of the National Academy of Sciences of the USA.
(2004);
101
8245-8250
- 24
Glazebrook J..
Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.
Annual Review of Phytopathology.
(2005);
43
205-227
- 25
Glazebrook J., Ausubel F..
Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens.
Proceedings of the National Academy of Sciences of the USA.
(1994);
91
8955-8959
- 26
Grubb C., Abel S..
Glucosinolate metabolism and its control.
Trends in Plant Science.
(2006);
11
89-100
- 27
Gurr S. J., Rushton P. J..
Engineering plants with increased disease resistance: what are we going to express?.
Trends in Biotechnology.
(2005);
23
275-282
- 28
Halkier B., Gershenzon J..
Biology and biochemistry of glucosinolates.
Annual Review of Plant Biology.
(2006);
57
303-333
- 29
Hancock R. E., Falla T., Brown M..
Cationic bactericidal peptides.
Advances in Microbial Physiology.
(1995);
37
135-175
- 30 Haneklaus S., Walker K. C., Schnug E..
A chronicle of sulfur research in agriculture. Saito, K., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E., Sirko, A., and
Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants in the Post Genomic
Era. Leiden; Backhuys Publishers (2005): 249-256
- 31
Hawkesford M. J., De Kok L. J..
Managing sulphur metabolism in plants.
Plant, Cell and Environment.
(2006);
29
382-395
- 32
Heil M..
The ecological concept of costs of induced systemic resistance (ISR).
European Journal of Plant Pathology.
(2001);
107
137-146
- 33
Heil M., Bostock R. M..
Induced systemic resistance (ISR) against pathogens in the context of induced plant
defences.
Annals of Botany.
(2002);
89
503-512
- 34
Hell R..
Molecular physiology of plant sulfur metabolism.
Planta.
(1997);
202
138-148
- 35 Hell R., Kruse C., Jost R., Lipschis M..
Molecular analysis of sulfur-based defense reactions in plant-pathogen interactions. Saito, K., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E., Sirko, A., and
Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants in the Post Genomic
Era. Leiden; Backhuys Publishers (2005): 209-216
- 36
Hughes P., Dennis E., Whitecross M., Llewellyn D., Gage P..
The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes.
The Journal of Biological Chemistry.
(2000);
275
823-827
- 37 Jost R., Scholze P., Hell R..
New approaches to study “sulfur-induced resistance” against fungal pathogens in Arabidopsis thaliana. Davidian, J.-C., Grill, D., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E.,
and Renneberg, H., eds. Sulfur Transport and Assimilation in Plants. Leiden; Backhuys
Publishers (2003): 247-249
- 38
Jost R., Altschmied L., Bloem E., Bogs J., Gershenzon J., Hahnel U., Hansch R., Hartmann T.,
Kopriva S., Kruse C., Mendel R., Papenbrock J., Reichelt M., Rennenberg H., Schnug E.,
Schmidt A., Textor S., Tokuhisa J., Wachter A., Wirtz M., Rausch T., Hell R..
Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation
of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana.
Photosynthesis Research.
(2005);
86
491-508
- 39
Kataoka T., Watanabe-Takahashi A., Hayashi N., Ohnishi M., Mimura T., Buchner P.,
Hawkesford M. J., Yamaya T., Takahashi H..
Vacuolar sulfate transporters are essential determinants controlling internal distribution
of sulfate in Arabidopsis.
Plant Cell.
(2004);
16
2693-2704
- 40
Kim H. S., Delaney T. P..
Arabidopsis SON1 is an F‐box protein that regulates a novel induced defense response independent
of both salicylic acid and systemic acquired resistance.
Plant Cell.
(2002);
14
1469-1482
- 41
Klikocka H., Haneklaus S., Bloem E., Schnug E..
Influence of sulfur fertilization on infection of potato tubers with Rhizoctonia solani and Streptomyces scabies.
Journal of Plant Nutrition.
(2005);
28
819-833
- 42
Konishi H., Ishiguro K., Komatsu S..
A proteomics approach towards understanding blast fungus infection of rice grown under
different levels of nitrogen fertilization.
Proteomics.
(2001);
1
1162-1171
- 43
Kruse C., Jost R., Hillebrand H., Hell R..
Sulfur-rich proteins and their agrobiotechnological potential for resistance to plant
pathogens.
FAL Agricultural Research.
(2005 a);
283
73-80
- 44 Kruse C., Kopp B., Hartmann M., Jost R., Hell R..
Sulfate-based performance of Arabidopsis thaliana in response to pathogen infection. Saito, K., De Kok, L. J., Stulen, I., Hawkesford, M., Schnug, E., Sirko, A., and
Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants in the Post Genomic
Era. Leiden; Backhuys Publishers (2005 b): 217-220
- 45
Long D. H., Lee F. N., TeBeest D. O..
Effect of nitrogen fertilization on disease progress of rice blast on susceptible
and resistant cultivars.
Plant Disease.
(2000);
84
403-409
- 46
Lorenzo O., Piqueras R., Sanchez-Serrano J. J., Solano R..
ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways
in plant defense.
Plant Cell.
(2003);
15
165-178
- 47 Mansfield J. W..
Antimicrobial compounds and resistance. Slusarenko, A. J., Fraser, R. S. S., and van Loon, L. C., eds. Mechanisms of Plant
Diseases. Dordrecht; Kluwer Academic Publishers (2000): 325-370
- 48
Marschner H., Kirkby E. A., Engels C..
Importance of cycling and recycling of mineral nutrients within plants for growth
and development.
Botanica Acta.
(1997);
110
265-273
- 49
Mauch F., Mauch-Mani B., Boller T..
Antifungal hydrolases in pea tissue.
Plant Physiology.
(1988);
88
936-942
- 50
Mauch-Mani B., Slusarenko A..
Arabidopsis as a model host for studying plant-pathogen interactions.
Trends in Microbiology.
(1993);
1
265-270
- 51
Mauch-Mani B., Slusarenko A. J..
Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase
in the resistance of Arabidopsis to Peronospora parasitica.
Plant Cell.
(1996);
8
203-212
- 52
May M. J., Vernoux T., Sanchez-Fernandez R., Van Montagu M., Inze D..
Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during
plant stress responses.
Proceedings of the National Academy of Sciences of the USA.
(1998);
95
12049-12054
- 53
Meyer A., Hell R..
Glutathione homeostasis and redox-regulation by sulfhydryl groups.
Photosynthesis Research.
(2005);
86
435-457
- 54
Mittelstraß K., Treutter D., Pleßl M., Heller W., Elstner E. F., Heiser I..
Modification of primary and secondary metabolism of potato plants by nitrogen application
differentially affects resistance to Phytophthora infestans and Alternaria solani.
Plant Biology.
(2006);
8
653-661
- 55
Mou Z., Fan W., Dong X..
Inducers of plant systemic acquired resistance regulate NPR1 function through redox
changes.
Cell.
(2003);
113
935-944
- 56
Nicolas P., Mor A..
Peptides as weapons against microorganisms in the chemical defense system of vertebrates.
Annual Review of Microbiology.
(1995);
49
277-304
- 57
Osbourn A. E..
Preformed antimicrobial compounds and plant defense against fungal attack.
Plant Cell.
(1996);
8
1821-1831
- 58
Parisy V., Poinssot B., Owsianowski L., Buchala A., Glazebrook J., Mauch F..
Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease
resistance of Arabidopsis.
The Plant Journal.
(2006);
49
159-172
- 59
Penninckx I. A., Eggermont K., Terras F. R., Thomma B. P., De Samblanx G. W., Buchala A.,
Metraux J. P., Manners J. M., Broekaert W. F..
Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway.
Plant Cell.
(1996);
8
2309-2323
- 60
Peschen D., Li H., Fischer R., Kreuzaler F., Liao Y..
Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen.
Nature Biotechnology.
(2004);
22
732-738
- 61
Pieterse C. M. J., van Wees S. C. M., Hoffland E., van Pelt J. A., van Loon L. C..
Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and
pathogenesis-related gene expression.
Plant Cell.
(1996);
8
1225-1237
- 62
Rausch T., Wachter A..
Sulfur metabolism: a versatile platform for launching defence operations.
Trends in Plant Science.
(2005);
10
503-509
- 63
Reimann-Philipp U., Schrader G., Martinoia E., Barkholt V., Apel K..
Intracellular thionins of barley.
The Journal of Biological Chemistry.
(1989);
264
8978-8984
- 64
Riemenschneider A., Riedel K., Hoefgen R., Papenbrock J., Hesse H..
Impact of reduced O-acetylserine(thiol)lyase isoform contents on potato plant metabolism.
Plant Physiology.
(2005);
137
892-900
- 65
Sasaki-Sekimoto Y., Taki N., Obayashi T., Aono M., Matsumoto F., Sakurai N., Suzuki H.,
Hirai M. Y., Noji M., Saito K., Masuda T., Takamiya K.-I., Shibata D., Ohta H..
Coordinated activation of metabolic pathways for antioxidants and defence compounds
by jasmonates and their roles in stress tolerance in Arabidopsis.
The Plant Journal.
(2005);
44
653-668
- 91
Schenk P. M., Kazan K., Manners J. M., Anderson J. P., Simpson R. S., Wilson I. W.,
Somerville S. C., Maclean D. J..
Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola.
Plant Physiology.
(2003);
132
999-1010
- 92
Schenk P. M., Kazan K., Wilson I., Anderson J. P., Richmond T., Somerville S. C.,
Manners J. M..
Coordinated plant defense responses in Arabidopsis revealed by microarray analysis.
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
11655-11660
- 66 Schnug E., Haneklaus S., Booth E., Walker K. C.. Sulphur supply and stress resistance
in oilseed rape. In 9th Int. Rapeseed Congress, Cambridge. (1995): 229-231
- 67 Schröder P..
Plants as sources of atmospheric sulfur. De Kok, L. J., Stulen, I., Rennenberg, H., Brunold, C., and Rauser, W. E., eds. Sulfur
Nutrition and Assimilation in Higher Plants. Den Haag; SPB Academic Publisher (1993):
253-270
- 68
Sellam A., Iacomi-Vasilescu B., Hudhomme P., Simoneau P..
In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer
pathogens Alternaria brassicicola and Alternaria brassicae.
Plant Pathology.
(2007);
56
296-301
- 69
Stec B., Markman O., Rao U., Heffron G., Henderson S., Vernon L. P., Brumfeld V.,
Teeter M. M..
Proposal for molecular mechanism of thionins deduced from physico-chemical studies
of plant toxins.
Journal of Peptide Research.
(2004);
64
210-224
- 70
Summermatter K., Sticher L., Métraux J.-P..
Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae.
Plant Physiology.
(1995);
108
1379-1385
- 71
Tailor R. H., Acland D. P., Attenborough S., Cammue B. P., Evans I. J., Osborn R. W.,
Ray J. A., Rees S. B., Broekaert W. F..
A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein.
The Journal of Biological Chemistry.
(1997);
272
24480-24487
- 72
Takahashi H., Watanabe-Takahashi A., Smith F. W., Blake-Kalff M., Hawkesford M. J.,
Saito K..
The roles of three functional sulphate transporters involved in uptake and translocation
of sulphate in Arabidopsis thaliana.
The Plant Journal.
(2000);
23
171-182
- 73
Terras F. R. G., Eggermont K., Kovaleva V., Raikhel N. V., Osborn R. W., Kester A.,
Rees S. B., Torrekens S., Van Leuven F., Vanderleyden J., Cammue B. P. A., Broekaert W. F..
Small cysteine-rich antifungal proteins from radish: their role in host defense.
Plant Cell.
(1995);
7
573-588
- 74
Thevissen K., Terras F. R., Broekaert W. F..
Permeabilization of fungal membranes by plant defensins inhibits fungal growth.
Applied and Environmental Microbiology.
(1999);
65
5451-5458
- 75
Thevissen K., Ghazi A., De Samblanx G. W., Brownlee C., Osborn R. W., Broekaert W. F..
Fungal membrane responses induced by plant defensins and thionins.
The Journal of Biological Chemistry.
(1996);
271
15018-15025
- 76
Thomma B., Broekaert W..
Tissue-specific expression of plant defensin genes PDF1.2 and PDF2.2 in Arabidopsis thaliana.
Plant Physiology and Biochemistry.
(1998);
36
533-537
- 77
Thomma B. P. H. J., Eggermont K., Penninckx I. A. M. A., Mauch-Mani B., Vogelsang R.,
Cammue B. P. A., Broekaert W. F..
Separate jasmonate-dependent and salicylate-dependent defense-response pathways in
Arabidopsis are essential for resistance to distinct microbial pathogens.
Proceedings of the National Academy of Sciences of the USA.
(1998);
95
15107-15111
- 78
Thomma B., Nelissen I., Eggermont K., Broekaert W..
Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola.
The Plant Journal.
(1999);
19
163-171
- 79
Thomma B. P., Cammue B. P., Thevissen K..
Plant defensins.
Planta.
(2002);
216
193-202
- 80
van Wees S. C. M., Chang H.-S., Zhu T., Glazebrook J..
Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling.
Plant Physiology.
(2003);
132
606-617
- 81
Vernon L. P., Rogers A..
Binding properties of Pyrularia thionin and Naja naja kaouthia cardiotoxin to human and animal erythrocytes and to murine P388 cells.
Toxicon.
(1992);
30
711-721
- 82 Wallsgrove R. M., Doughty K., Bennett R. N..
Glucosinolates. Singh, B. K., ed. Plant Amino Acids. New York, Basel, Hong Kong; Marcel Dekker Inc.
(1999): 523-561
- 83
Wildermuth M., Dewdney J., Wu G., Ausubel F..
Isochorismate synthase is required to synthesize salicylic acid for plant defence.
Nature.
(2001);
414
562-565
- 84
Williams J. S., Cooper R. M..
Elemental sulphur is produced by diverse families as a component of defence against
fungal and bacterial pathogens.
Physiological Molecular Plant Pathology.
(2003);
63
3-16
- 85
Williams J. S., Cooper R. M..
The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of
elemental sulphur.
Plant Pathology.
(2004);
53
263-279
- 86
Williams J. S., Hall S. A., Hawkesford M. J., Beale M. H., Cooper R. M..
Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular
pathogen.
Plant Physiology.
(2002);
128
150-159
- 87
Wirth S. J., Wolf G. A..
Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity.
Journal of Microbiological Methods.
(1990);
12
197-205
- 88
Wirtz M., Hell R..
Functional analysis of the cysteine synthase protein complex from plants: structural,
biochemical and regulatory properties.
Journal of Plant Physiology.
(2006);
163
273-286
- 89
Wirtz M., Droux M., Hell R..
O-acetylserine (thiol)lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited
in Arabidopsis thaliana.
Journal of Experimental Botany.
(2004);
55
1785-1798
- 90
Woynarowski J. M., Konopa J..
Interaction between DNA and viscotoxins. Cytotoxic basic polypeptides from Viscum album L.
Hoppe-Seyler's Zeitschrift für Physiologische Chemie.
(1980);
361
1535-1545
R. Hell
Heidelberg Institute of Plant Science
University of Heidelberg
Im Neuenheimer Feld 360
69120 Heidelberg
Germany
Email: rhell@hip.uni-hd.de
Guest Editor: T. Rausch