Abstract
The significance of root nitrate reductase for sulfur assimilation was studied in tobacco (Nicotiana tabacum) plants. For this purpose, uptake, assimilation, and long-distance transport of sulfur were compared between wild-type tobacco and transformants lacking root nitrate reductase, cultivated either with nitrate or with ammonium nitrate. A recently developed empirical model of plant internal nitrogen cycling was adapted to sulfur and applied to characterise whole plant sulfur relations in wild-type tobacco and the transformant. Both transformation and nitrogen nutrition strongly affected sulfur pools and sulfur fluxes. Transformation decreased the rate of sulfate uptake in nitrate-grown plants and root sulfate and total sulfur contents in root biomass, irrespective of N nutrition. Nevertheless, glutathione levels were enhanced in the roots of transformed plants. This may be a consequence of enhanced APR activity in the leaves that also resulted in enhanced organic sulfur content in the leaves of the tranformants. The lack of nitrate reductase in the roots in the transformants caused regulatory changes in sulfur metabolism that resembled those observed under nitrogen deficiency. Nitrate nutrition reduced total sulfur content and all the major fractions analysed in the leaves, but not in the roots, compared to ammonium nitrate supply. The enhanced organic sulfur and glutathione levels in ammonium nitrate-fed plants corresponded well to elevated APR activity. But foliar sulfate contents also increased due to decreased re-allocation of sulfate into the phloem of ammonium nitrate-fed plants. Further studies will elucidate whether this decrease is achieved by downregulation of a specific sulfate transporter in vascular tissues.
Key words
APS reductase - ammonium - glutamine - glutamate - glutathione - long-distance transport - nitrogen nutrition - sulfate - organic sulfur - transgenic tobacco - uptake
References
1
Brunold C., Suter M..
Regulation of sulfate assimilation by nitrogen nutrition in the duckweed Lemna minor L.
Plant Physiology.
(1984);
76
579-583
2
Brunold C., Suter M..
Sulphur metabolism. B. Adenosine 5′-phosphosulphate sulphotransferase.
Methods in Plant Biochemistry.
(1990);
3
339-343
3 Brunold C., von Ballmoos P., Hesse H., Fell D., Kopriva S.. Interactions between sulfur, nitrogen and carbon metabolism. Davidian, J.-C., De Kok, L. J., Stulen, I., Hawkesford, M. J., Schnug, E., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants: Regulation, Interaction, Signaling. Leiden; Backhuys Publ. (2003): 45-56
4
Buchner P., Takahashi H., Hawkesford M. J..
Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport.
Journal of Experimental Botany.
(2004);
55
1765-1773
5
Foyer C.-H., Lescure J. C., Lefebvre C., Morot G. J. F., Vincentz M., Vaucheret H..
Adaptations and photosynthetic electron transport, carbon assimilation and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity.
Plant Physiology.
(1994);
104
171-178
6 Foyer C. H., Rennenberg H.. Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects. Bern; Paul Haupt (2000): 127-153
7
Glass A. D. M., Britto D. T., Kaiser B. N., Kinghorn. J. R., Kronzucker H. J., Kumar A., Okamoto M., Rawat S., Siddiqi M. Y., Unkles S. E., Vidmar J. J..
The regulation of nitrate and ammonium transport systems in plants.
Journal of Experimental Botany.
(2002);
53
855-864
8
Gojon A., Dapoigny L., Lejay L., Tillard P., Rufty T. W..
Effects of genetic modifications of nitrate reductase expression on 15 NO3
- uptake and reduction in Nicotiana plants.
Plant, Cell and Environment.
(1998);
21
43-53
9
Hänsch R., Fessel D. G., Hoffmann C., Hesberg C., Hoffmann G., Walch-Liu P., Engels C., Kruse J., Rennenberg H., Kaiser W. M., Mendel R.-R..
Tobacco plants that lack expression of a functional nitrate reductase in the roots show changes in growth rates and metabolite accumulation.
Journal of Experimental Botany.
(2001);
52
1251-1258
10
Hartmann T., Mult M., Suter M., Rennenberg H., Herschbach C..
Leaf age-dependent differences in sulphur assimilation and allocation in poplar (Populus tremula × P. alba) leaves.
Journal of Experimental Botany.
(2000);
51
1077-1088
11
Hartmann T., Hönicke P., Wirtz M., Hell R., Rennenberg H., Kopriva S..
Sulfate assimilation in poplars (Populus tremula × P. alba) overexpressing γ-glutamylcysteine synthetase in the cytosol.
Journal of Experimental Botany.
(2004);
55
837-845
12
Herschbach C., van der Zalm E., Schneider A., Jouanin L., De Kok L., Rennenberg H..
Regulation of sulphur nutrition in wildtype and transgenic poplar overexpressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2 S.
Plant Physiology.
(2000);
124
461-473
13
Kaiser W. M., Huber S. C..
Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers.
Journal of Experimental Botany.
(2001);
52
1981-1989
14
Kaiser W. M., Weiner H., Kandlbinder A., Tsai C. B., Rockel. P., Sonoda M., Planchet E..
Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction.
Journal of Experimental Botany.
(2002);
53
875-882
15
Kindermann G., Hüve K., Slovik S., Lux H., Rennenberg H..
Is emission of hydrogen sulfide a dominant factor of SO2 detoxification? - A comparison of Norway spruce (Picea abies [L.] Karst., Scots pine (Pinus sylvestris L.) and blue spruce (Picea pungens Engelm.) in the Ore Mountains.
Phyton.
(1995);
35
255-267
16
Kopriva S..
Regulation of sulfate assimilation in Arabidopsis and beyond.
Annals of Botany.
(2006);
97
479-495
17
Kopriva S., Rennenberg H..
Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism.
Journal of Experimental Botany.
(2004);
55
1831-1842
18
Koprivova A., Suter M., Op den Camp R., Brunold C., Kopriva S..
Regulation of sulfate assimilation by nitrogen in Arabidopsis .
Plant Physiology.
(2000);
122
737-746
19
Kruse J., Hetzger I., Hänsch R., Mendel R.-R., Walch-Liu P., Engels C., Rennenberg H..
Elevated p CO2 favours nitrate reduction in roots of wild type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-uptake, ‐transport and ‐allocation in transformed tobacco lacking functional nitrate reductase in the roots.
Journal of Experimental Botany.
(2002);
379
2351-2367
20
Kruse J., Hetzger I., Hänsch R., Mendel R.-R., Rennenberg H..
Evaluation of the effects of elevated p CO2 on C- and N-metabolism in wild type and transgenic tobacco exhibiting an altered C/N-balance by metabolite analysis.
Plant Biology.
(2003);
5
540-549
21
Leustek T., Marin M. N., Bick J. A., Davies J. P..
Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies.
Annual Review of Plant Physiology and Plant Molecular Biology.
(2000);
51
141-165
22
Li J., Schiff A..
Purification and properties of adenosine 5′-phosphosulfate sulfotransferase from Euglena.
Biochemical Journal.
(1991);
274
355-360
23
Migge A., Bork C., Hell R., Becker T. W..
Negative regulation of nitrate reductase gene expression by glutamine or asparagines accumulating in leaves of sulfur-deprived tobacco.
Planta.
(2000);
211
587-595
24 Müller A. J., Mendel R. R.. Biochemical and somatic cell genetics of nitrate reduction in Nicotiana . Wray, J. L. and Kinghorn, J. L., eds. Molecular and Genetic Aspects of Nitrate Assimilation. Oxford; Oxford University Press (1989): 166-185
25
Ohkama N., Takei K., Sakakibara H., Hayashi H., Yoneyama T., Fujiwara T..
Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana .
Plant and Cell Physiology.
(2002);
43
1493-1501
26
Prosser I. M., Purves J. V., Saker L. R., Clarkson D. T..
Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate.
Journal of Experimental Botany.
(2001);
52
113-121
27
Rennenberg H., Schmitz K., Bergmann L..
Long-distance transport of sulfur in Nicotiana tabacum .
Planta,.
(1979);
147
57-62
28
Rennenberg H., Schneider S., Weber P..
Analysis of uptake and allocation of nitrogen and sulphur by trees in the field.
Journal of Experimental Botany.
(1996);
47
1491-1498
29
Reuveny Z., Dougall D. K., Trinity P. M..
Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells.
Proceedings of the National Academy of Sciences of the USA.
(1980);
77
6670-6672
30
Scheible W.-R., González-Fontes A., Morcuende R., Lauerer M., Geiger M., Glaab J., Gojon A., Schulze E.-D., Stitt M..
Tobacco mutants with a decreased number of functional nia genes compensate by modifying then diurnal regulation of transcription, post-transcriptional modification and turnover of nitrate reductase.
Planta.
(1997 a);
203
304-319
31
Scheible W.-R., Lauerer M., Schulze E.-D., Caboche M., Stitt M..
Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco.
The Plant Journal.
(1997 b);
11
671-691
32
Scholander P. F., Hammel H. T., Bradstreet E. D., Hemmingsen E. A..
Sap pressure in vascular plants.
Science.
(1965);
148
339-346
33
Schupp R., Glavac V., Rennenberg H..
Thiol composition of xylem sap of beech trees.
Phytochemistry.
(1991);
30
1415-1418
34
Schupp R., Rennenberg H..
Diurnal changes in the glutathione concentration of Spruce needles (Picea abies L.).
Plant Science.
(1988);
57
113-117
35
Smith I. K..
Regulation of sulfate assimilation in tobacco cells. Effect of nitrogen and sulfur nutrition on sulfate permease and O -acetylserine sulfhydrylase.
Plant Physiology.
(1980);
66
877-883
36
Strohm M., Jouanin L., Kunert K. J., Pruvost C., Polle A., Foyer H. C., Rennenberg H..
Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase.
The Plant Journal.
(1995);
7
141-145
37
Suter M., Lavanchy P., von Arb C., Brunold C..
Regulation of sulfate assimilation by amino acids in Lemna minor L.
Plant Science.
(1986);
44
125-132
38
Takahashi H., Watanabe-Takahashi A., Smith F. W., Blake-Kalff M., Hawkesford M. J., Saito K..
The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana .
The Plant Journal.
(2000);
23
171-182
39
Vauclare P., Kopriva S., Fell D., Suter M., Sticher L., von Ballmoos P., Krähenbühl U., Op den Camp R., Brunold C..
Flux control of sulphate assimilation in Arabidopsis thaliana : Adenosine 5′-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase.
The Plant Journal.
(2002);
31
729-740
40
Walch-Liu P., Neumann G., Bangerth F., Engels C..
Rapid effects of nitrogen form on leaf morphogenesis in tobacco.
Journal of Experimental Botany.
(2000);
51
227-237
41
Yang Z., Midmore D. J..
A model for the circadian oscillations in expression and activity of nitrate reductase in higher plants.
Annals of Botany.
(2005);
96
1019-1026
H. Rennenberg
Institut für Forstbotanik und Baumphysiologie Professur für Baumphysiologie Universität Freiburg
Georges-Köhler-Allee 053/054
79110 Freiburg
Germany
eMail: heinz.rennenberg@ctp.uni-freiburg.de
Guest Editor: T. Rausch