Int J Sports Med 2008; 29(5): 379-383
DOI: 10.1055/s-2007-965567
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Relationship between Muscle Oxygenation Kinetics and the Rate of Decline in Peak Torque during Isokinetic Knee Extension in Acute Hypoxia and Normoxia

Y. Kawahara1 , Y. Saito2 , K. Kashimura3 , I. Muraoka4
  • 1Graduate School of Human Sciences, Waseda University, Tokorozawa, Japan
  • 2Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
  • 3Graduate School of Human Sciences, Waseda University, Tokorozawa, Japan
  • 4School of Sports Sciences, Waseda University, Tokorozawa, Japan
Further Information

Publication History

accepted after revision May 28, 2007

Publication Date:
18 September 2007 (online)

Abstract

To investigate whether low FiO2 affects muscle oxygenation and the rate of decline in peak torque (DR) during isokinetic knee extension, subjects performed 50 isokinetic knee extensions at 180°/s and at 0.5 Hz while inhaling low O2 gas (12 %O2; H) or air (N). Muscle oxygenation kinetics was assessed by near-infrared spectroscopy, and whole-body V·O2 and HR were measured. We calculated total-, oxy- and deoxy-hemoglobin/myoglobin concentrations (TotalHb/Mb, OxyHb/Mb, DeoxyHb/Mb), and the slopes of the change in OxyHb/Mb during exercise. SpO2 decreased in H while DR and V·O2 did not differ between the conditions. During exercise, OxyHb/Mb was lower in H than in N, and DeoxyHb/Mb was higher in H than in N. TotalHb/Mb began to increase from the resting level earlier in H. HR was higher during the latter half of the exercise in H. The slopes of the change in OxyHb/Mb were the same in the two conditions. Our results show that low FiO2 decreases SpO2 and muscle oxygenation during maximal isokinetic knee extension. However, low SpO2 and muscle oxygenation did not affect the rates of decline of peak torque. These results suggest that the decline in peak torque occurs for reasons other than O2 availability.

References

  • 1 Bae S Y, Hamaoka T, Katsumura T, Shiga T, Ohno H, Haga S. Comparison of muscle oxygen consumption measured by near infrared continuous wave spectroscopy during supramaximal and intermittent pedaling exercise.  Int J Sports Med. 2000;  21 168-174
  • 2 Belardinelli R, Barstow T J, Porszasz J, Wasserman K. Skeletal muscle oxygenation during constant work rate exercise.  Med Sci Sports Exerc. 1995;  27 512-519
  • 3 Belardinelli R, Barstow T J, Porszasz J, Wasserman K. Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy.  Eur J Appl Physiol. 1995;  70 487-492
  • 4 Calbet J A, De Paz J A, Garatachea N, Cabeza de Vaca S, Chavarren J. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists.  J Appl Physiol. 2003;  94 668-676
  • 5 Eiken O, Tesch P A. Effects of hyperoxia and hypoxia on dynamic and sustained static performance of the human quadriceps muscle.  Acta Physiol Scand. 1984;  122 629-633
  • 6 Gerdle B, Elert J, Henriksson-Larsen K. Muscular fatigue during repeated isokinetic shoulder forward flexions in young females.  Eur J Appl Physiol. 1989;  58 666-673
  • 7 Hamaoka T, Iwane H, Shimomitsu T, Katsumura T, Murase N, Nishio S, Osada T, Kurosawa Y, Chance B. Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy.  J Appl Physiol. 1996;  81 1410-1417
  • 8 Hogan M C, Nioka S, Brechue W F, Chance B A. 31P‐NMR study of tissue respiration in working dog muscle during reduced O2 delivery conditions.  J Appl Physiol. 1992;  73 1662-1670
  • 9 Hogan M C, Richardson R S, Kurdak S S. Initial fall in skeletal muscle force development during ischemia is related to oxygen availability.  J Appl Physiol. 1994;  77 2380-2384
  • 10 Hogan M C, Kurdak S S, Arthur P G. Effect of gradual reduction in O2 delivery on intracellular homeostasis in contracting skeletal muscle.  J Appl Physiol. 1996;  80 1313-1321
  • 11 Homma S, Eda H, Ogasawara S, Kagaya A. Near-infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity.  J Appl Physiol. 1996;  80 1279-1284
  • 12 Kavanagh M F, Jacobs I. Breath-by-breath oxygen consumption during performance of the Wingate Test.  Can J Sport Sci. 1988;  13 91-93
  • 13 Koskolou M D, Calbet J A, Radegran G, Roach R C. Hypoxia and the cardiovascular response to dynamic knee-extensor exercise.  Am J Physiol. 1997;  272 H2655-H2663
  • 14 Lundby C, Sander M, van Hall G, Saltin B, Calbet J A. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives.  J Physiol. 2006;  573 (Pt 2) 535-547
  • 15 Mancini D M, Bolinger L, Li H, Kendrick K, Chance B, Wilson J R. Validation of near-infrared spectroscopy in humans.  J Appl Physiol. 1994;  77 2740-2747
  • 16 McLellan T M, Kavanagh M F, Jacobs I. The effect of hypoxia on performance during 30 s or 45 s of supramaximal exercise.  Eur J Appl Physiol. 1990;  60 155-161
  • 17 Nioka S, Moser D, Lech G, Evengelisti M, Verde T, Chance B, Kuno S. Muscle deoxygenation in aerobic and anaerobic exercise.  Adv Exp Med Biol. 1998;  454 63-70
  • 18 Parolin M L, Chesley A, Matsos M P, Spriet L L, Jones N L, Heigenhauser G J. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise.  Am J Physiol. 1999;  277 E890-900
  • 19 Richardson R S, Noyszewski E A, Kendrick K F, Leigh J S, Wagner P D. Myoglobin O2 desaturation during exercise.  J Clin Invest. 1995;  96 1916-1926
  • 20 Richardson R S, Knight D R, Poole D C, Kurdak S S, Hogan M C, Grassi B, Wagner P D. Determinants of maximal exercise V·O2 during single leg knee-extensor exercise in humans.  Am J Physiol. 1995;  268 H1453-H1461
  • 21 Skinner M R, Marshall J M. Studies on the roles of ATP, adenosine and nitric oxide in mediating muscle vasodilatation induced in the rat by acute systemic hypoxia.  J Physiol. 1996;  495 (Pt 2) 553-560
  • 22 Takano N, Inaishi S, Zhang Y. Individual differences in breathlessness during exercise, as related to ventilatory chemosensitivities in human.  J Physiol. 1997;  499 843-848
  • 23 Tesch P, Sjodin B, Thorstensson A, Karlsson J. Muscle fatigue and its relation to lactate accumulation and LDH activity in man.  Acta Physiol Scand. 1978;  103 413-420
  • 24 Tran T, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T. Comparative analysis of NMR and NIRS measurements of intracellular Po2 in human skeletal muscle.  Am J Physiol. 1999;  276 R1682-R1690
  • 25 Verges S, Flore P, Favre-Juvin A, Levy P, Wuyam B. Exhaled nitric oxide during normoxic and hypoxic exercise in endurance athletes.  Acta Physiol Scand. 2005;  185 123-131
  • 26 Wright J R, McCloskey D I, Fitzpatrick R C. Effects of muscle perfusion pressure on fatigue and systemic arterial pressure in human subjects.  J Appl Physiol. 1999;  86 845-851
  • 27 Weil J V, Zwillich C W. Assessment of ventilatory response to hypoxia: methods and interpretation.  Chest. 1976;  70 124-128

Dr. Doctor Yayoi Kawahara

Waseda University
Graduate School of Human Sciences

2-26-7 Nishimagome, Ota-ku

143-0026 Tokyo

Japan

Email: Yayoi@kk.email.ne.jp