PAPER
© Georg Thieme Verlag Stuttgart · New York
Synthesis of Symmetrically and Unsymmetrically para -Functionalized p -Quaterphenylenes
Manuela Schieka , Katharina Al-Shamerya , Arne Lützen*b
a University of Oldenburg, Institute of Pure and Applied Chemistry, P.O. Box 2503, 26111 Oldenburg, Germanyb University of Bonn, Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany Fax: +49(228)739608; e-Mail: arne.luetzen@uni-bonn.de ;
Abstract
Oligo-p -phenylenes have proven to be versatile building blocks for the generation of self-assembled nanoaggregates with interesting optical properties via vapor deposition on solid supports. Preliminary studies have shown that both the properties and the morphologies of these aggregates can be influenced by the introduction of functional groups. To this end, we have developed general approaches to the synthesis of symmetrically and unsymmetrically 1,4′′′-substituted p -quaterphenylenes through the application of a reliable Suzuki cross-coupling strategy.
Key words
cross-coupling reaction - oligo-p -phenylenes - rod-like molecules - Suzuki
References
1a
Müllen K.
Wegner G.
Electronic Materials: The Oligomer Approach
Wiley-VCH;
Weinheim:
1998.
1b
Fichou D.
Handbook of Oligo- and Polythiophenes
Wiley-VCH;
Weinheim:
1999.
1c
Nalva HS.
Handbook of Advanced Electronic and Photonic Materials and Devices
Academic Press;
San Diego:
2000.
1d
Müllen K.
Scherf U.
Organic Light Emitting Devices - Synthesis, Properties and Applications
Wiley-VCH;
Weinheim:
2006.
1e
Klauk H.
Organic Electronics - An Industrial Perspective
Wiley-VCH;
Weinheim:
2006.
2a
Schwab PFH.
Levin MD.
Michl J.
Chem. Rev.
1999,
99:
1863
2b
Schwab PFH.
Smith JR.
Michl J.
Chem. Rev.
2005,
105:
1197
3
Ziegler G. In Handbook of Organic Conductive Molecules and Polymers
Vol. 3:
Nalwa HS.
Wiley;
New York:
1997.
Chap. 13.
4a
Krause B.
Dürr AC.
Ritley K.
Schreiber F.
Dosch H.
Smilgies D.
Phys. Rev. B: Condens. Matter Mater. Phys.
2002,
66:
235404
4b
Würthner F.
Chem. Commun.
2004,
1564
5
Bendikov M.
Wudl F.
Perepichka DF.
Chem. Rev.
2004,
104:
4891
6
James DK.
Tour JM.
Top. Curr. Chem.
2005,
257:
33
7a
Resel R.
Thin Solid Films
2003,
433:
1
7b
Balzer F.
Rubahn H.-G.
Adv. Funct. Mater.
2005,
14:
17
7c
Balzer F.
Rubahn H.-G.
Phys. Unserer Zeit
2005,
36:
36
8a
Witte G.
Woell C.
J. Mater. Res.
2004,
19:
1889
8b
Hertel D.
Müller CD.
Meerholz K.
Chem. Unserer Zeit
2005,
39:
336
9a
Balzer F.
Rubahn H.-G.
Appl. Phys. Lett.
2001,
79:
2860
9b
Balzer F.
Rubahn H.-G.
Surf. Sci.
2002,
507:
588
10
Yanagi H.
Morikawa T.
Appl. Phys. Lett.
1999,
75:
187
11a
Balzer F.
Bordo VG.
Simonsen AC.
Rubahn H.-G.
Appl. Phys. Lett.
2003,
82:
10
11b
Balzer F.
Bordo VG.
Simonsen AC.
Rubahn H.-G.
Phys. Rev. B: Condens. Matter Mater. Phys.
2003,
67:
115408
12a
Quochi F.
Cordella F.
Orrì R.
Communal JE.
Verzeroli P.
Mura A.
Bongiovanni G.
Andreev A.
Sitter H.
Sariciftci NS.
Appl. Phys. Lett.
2004,
84:
4454
12b
Quochi F.
Cordella F.
Mura A.
Bongiovanni G.
Balzer F.
Rubahn H.-G.
J. Phys. Chem. B
2005,
109:
21690
12c
Quochi F.
Cordella F.
Mura A.
Bongiovanni G.
Balzer F.
Rubahn H.-G.
Appl. Phys. Lett.
2006,
88:
041106
13
Kjelstrup-Hansen J.
Henrichsen HH.
Bøggild P.
Rubahn H.-G.
Thin Solid Films
2006,
515:
827
14
Henrichsen HH.
Kjelstrup-Hansen J.
Engstroem D.
Clausen CH.
Bøggild P.
Rubahn H.-G.
Appl. Phys. A
2006, submitted
15
Kjelstrup-Hansen J.
Bøggild P.
Rubahn H.-G.
J. Phys. C
2006, submitted
16a
Schiek M.
Lützen A.
Koch R.
Al-Shamery K.
Balzer F.
Frese R.
Rubahn H.-G.
Appl. Phys. Lett.
2005,
86:
153107
16b
Schiek M.
Lützen A.
Al-Shamery K.
Balzer F.
Rubahn H.-G.
Surf. Sci.
2006,
600:
4030
16c
Schiek M.
Lützen A.
Al-Shamery K.
Balzer F.
Rubahn H.-G.
Cryst. Growth Des.
2006, accepted for publication
17
Brewer J.
Schiek M.
Lützen A.
Al-Shamery K.
Rubahn H.-G.
Nano Lett.
2006,
6:
2656
18
Schmidt H.
Schultz G.
Justus Liebigs Ann. Chem.
1880,
203:
129
19a
Scheinbaum ML.
J. Chem. Soc., Chem. Commun.
1969,
1235
19b
Pavlopoulos TG.
Hammond PR.
J. Am. Chem. Soc.
1974,
96:
6568
20a
Keegstra MA.
De Feyter S.
De Schryver FC.
Müllen K.
Angew. Chem., Int. Ed. Engl.
1996,
35:
774 ; Angew. Chem. 1996 , 108 , 830
20b
Iyer VS.
Wehmeier M.
Brand JD.
Keegstra MA.
Müllen K.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1604 ; Angew. Chem. 1997 , 109 , 1676
20c
Müller M.
Iyer VS.
Kübel C.
Enkelmann V.
Müllen K.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1607 ; Angew. Chem . 1997 , 109 , 1679
20d
Fechtenkötter A.
Saalwächter K.
Harbison MA.
Müllen K.
Spiess HW.
Angew. Chem. Int. Ed.
1999,
38:
3039 ; Angew. Chem . 1999 , 111 , 3224
20e
Ito S.
Herwig PT.
Böhme T.
Rabe JP.
Rettig W.
Müllen K.
J. Am. Chem. Soc.
2000,
122:
7698
21a
Stille JK.
Rakutis RO.
Mukamal H.
Harris FW.
Macromolecules
1968,
1:
431
21b
Morgenroth F.
Reuther E.
Müllen K.
Angew. Chem., Int. Ed. Engl.
1997,
36:
631 ; Angew. Chem . 1997 , 109 , 647
21c
Wiesler U.-M.
Müllen K.
Chem. Commun.
1999,
2293
21d
Dötz F.
Brand JD.
Ito S.
Gherghel L.
Müllen K.
J. Am. Chem. Soc.
2000,
122:
7707
21e
Wiesler U.-M.
Berresheim AJ.
Morgenroth F.
Lieser G.
Müllen K.
Macromolecules
2001,
34:
187
21f
Weil T.
Wiesler U.-M.
Herrmann A.
Bauer R.
Hofkens J.
De Schryver FC.
Müllen K.
J. Am. Chem. Soc.
2001,
123:
8101
21g
Simpson CD.
Brand JD.
Berresheim AJ.
Przybilla L.
Räder HJ.
Müllen K.
Chem. Eur. J.
2002,
8:
1424
22
Subramaniam G.
Gilpin RK.
Synthesis
1992,
1232
23a
Hart H.
Harada K.
Tetrahedron Lett.
1985,
26:
29
23b
Hart H.
Harada K.
Frank Du C.-J.
J. Org. Chem.
1985,
50:
3104
23c
Harada K.
Hart H.
Frank Du C.-J.
J. Org. Chem.
1985,
50:
5524
23d
Frank Du C.-J.
Hart H.
Ng K.-KD.
J. Org. Chem.
1986,
51:
3162
24a
Rebmann A.
Zhou J.
Schuler P.
Stegmann HB.
Rieker A.
J. Chem. Res., Synop.
1996,
318
24b
Rebmann A.
Zhou J.
Schuler P.
Rieker A.
Stegmann HB.
J. Chem. Soc., Perkin Trans. 2
1997,
1615
25
Harley-Mason J.
Mann FG.
J. Chem. Soc.
1940,
1379
26a
Metal-catalyzed Cross-Coupling Reactions
2nd ed.:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
26b
Lie JJ.
Gribble GW.
Palladium in Heterocyclic Chemistry
Pergamon Press, Elsevier;
Amsterdam:
2000.
26c
Cross-Coupling Reactions
Miyaura N.
Springer;
Berlin:
2002.
26d For a special issue on cross-coupling reactions, see: Tamao K.
Hiyama T.
Negishi E.
J. Organomet. Chem.
2002,
653:
1
For examples of the application of nickel-catalyzed Kharash couplings for the synthesis of oligo-p -phenylenes, see:
27a
Saitoh H.
Saito K.
Yamamura Y.
Matsuyama H.
Kikuchi K.
Iyoda M.
Ikemoto I.
Bull. Chem. Soc. Jpn.
1993,
66:
2847
27b
Ung VA.
Bardwell DA.
Jeffery JC.
Maher JP.
McCleverty JA.
Ward MD.
Williamson A.
Inorg. Chem.
1996,
35:
5290
27c
Abdul-Rahman A.
Amoroso AA.
Branston TN.
Das A.
Maher JP.
McCleverty JA.
Ward MD.
Wlodarczyk A.
Polyhedron
1997,
16:
4353
For examples of the application of palladium-catalyzed Kharash couplings for the synthesis of oligo-p -phenylenes, see:
28a
Kallitsis JK.
Kakali F.
Gravalos KG.
Macromolecules
1994,
27:
4509
28b
Kallitsis JK.
Gravalos KG.
Hilberer A.
Hadziioannou G.
Macromolecules
1997,
30:
2989
28c
Kauffmann JM.
Synthesis
1999,
918
28d
Rathore R.
Burns CL.
Deselnicu MI.
Org. Lett.
2001,
3:
2887
For examples of the application of palladium-catalyzed Suzuki couplings for the synthesis of oligo-p -phenylenes, see:
29a
Liess P.
Hensel V.
Schlüter A.-D.
Liebigs Ann.
1996,
1037
29b
Fran J.
Karakaya B.
Schäfer A.
Schlüter AD.
Tetrahedron
1997,
53:
15459
29c
Hensel V.
Schlüter A.-D.
Chem. Eur. J.
1999,
5:
421
29d
Sakai N.
Brennan KC.
Weiss LA.
Matile S.
J. Am. Chem. Soc.
1997,
119:
8726
29e
Ghebremariam B.
Matile S.
Tetrahedron Lett.
1998,
39:
5335
29f
Ghebremariam B.
Sidorov V.
Matile S.
Tetrahedron Lett.
1999,
40:
1445
29g
Winum J.-Y.
Matile S.
J. Am. Chem. Soc.
1999,
121:
7961
29h
Robert F.
Winum J.-Y.
Sakai N.
Gerard D.
Matile S.
Org. Lett.
2000,
2:
37
29i
Sakai N.
Gerard D.
Matile S.
J. Am. Chem. Soc.
2001,
123:
2517
29j
Sakai N.
Matile S.
J. Am. Chem. Soc.
2002,
124:
1184
29k
Galda P.
Rehahn M.
Synthesis
1996,
614
29l
Kim S.
Jackiw J.
Robinson E.
Schanze KS.
Reynolds JR.
Macromolecules
1998,
31:
964
29m
Goldfinger MB.
Crawford KB.
Swager TM.
J. Org. Chem.
1998,
63:
1676
29n
Konstandakopoulou FD.
Gravalos KG.
Kallitsis JK.
Macromolecules
1998,
31:
5264
29o
Morikawa A.
Macromolecules
1998,
31:
5999
29p
Schlicke B.
Belser P.
De Cola L.
Sabbioni E.
Balzani V.
J. Am. Chem. Soc.
1999,
121:
4207
29q
Taylor PN.
O’Connell MJ.
McNeill LA.
Hall MJ.
Alpin RT.
Anderson HL.
Angew. Chem. Int. Ed.
2000,
39:
3456 ; Angew. Chem . 2000 , 112 , 3598
29r
Read MW.
Escobedo JO.
Willis DM.
Beck PA.
Strongin RM.
Org. Lett.
2000,
2:
3201
29s
Hwang S.-W.
Chen Y.
Macromolecules
2001,
34:
2981
29t
Park J.-W.
Ediger MD.
Green MM.
J. Am. Chem. Soc.
2001,
123:
49
29u
Deng X.
Mayeux A.
Cai C.
J. Org. Chem.
2002,
67:
5279
29v
Lightowler S.
Hird M.
Chem. Mater.
2004,
16:
3963
29w
Lightowler S.
Hird M.
Chem. Mater.
2005,
27:
5538
30a
Percec V.
Okita S.
J. Polym. Sci., Part A: Polym. Chem.
1993,
31:
877
30b
Morikawa A.
Macromolecules
1998,
31:
5999
30c
Li ZH.
Wong MS.
Tao Y.
D’Iorio M.
J. Org. Chem.
2004,
69:
921
30d
Lee M.
Jang C.-J.
Ryu J.-H.
J. Am. Chem. Soc.
2004,
126:
8082
30e
Ryu J.-H.
Jang C.-J.
Yoo Y.-S.
Lim S.-G.
Lee M.
J. Org. Chem.
2005,
70:
8956
30f
Welter S.
Salluce N.
Benetti A.
Rot N.
Belser P.
Sonar P.
Grimsdale AC.
Müllen K.
Lutz M.
Spek AL.
de Cola L.
Inorg. Chem.
2005,
44:
4706
31
Broutin PE.
Cerna I.
Campaniello M.
Leroux F.
Colobert F.
Org. Lett.
2004,
6:
4419
32a
Thiemann F.
Piehler T.
Haase D.
Saak W.
Lützen A.
Eur. J. Org. Chem.
2005,
1991
32b
Pushechnikov O.
Ivonin SP.
Chaikovskaya AA.
Kudrya TN.
Pirozhenko VV.
Tolmachev AA.
Chem. Heterocycl. Compd.
1999,
35:
1313 ; without synthetic details or characterization
In fact this compound is commercially available and its synthesis has been previously described using different approaches, see:
33a
Han Y.
Walker SD.
Young RN.
Tetrahedron Lett.
1996,
37:
2703
33b
Spivey AC.
Diaper CM.
Rudge AJ.
Chem. Commun.
1999,
835
33c
Spivey AC.
Diaper CM.
Adams H.
Rudge AJ.
J. Org. Chem.
2000,
65:
5253
33d
Sinclair DJ.
Sherburn MS.
J. Org. Chem.
2005,
70:
3730 . However, no NMR or MS data were provided
34 In fact this compound is commercially available and its synthesis has been previously described using a different approach, see ref. 33a. However, no NMR or MS data were provided.
This compound has been previously synthesized using a different approach, see:
35a
Pummerer R.
Sellsberger L.
Ber. Dtsch. Chem. Ges. B.
1931,
64:
2477
35b
McNamara JM.
Gleason WB.
J. Org. Chem.
1976,
41:
1071 . However, no NMR or MS data were provided
This compound is commercially available and its synthesis has been previously described using different approaches, see:
36a
Sedov AM.
Sergeeva AA.
Novikov AN.
Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.
1970,
13:
591 ; Chem. Abstr . 1970, 73 , 87559
36b
Rottaelander M.
Palmer N.
Knochel P.
Synlett
1996,
573
36c
Sinclair DJ.
Sherburn MS.
J. Org. Chem.
2005,
70:
3730. However, no NMR or MS data were provided
This compound has been previously synthesized using a different approach, see:
37a
Theilacker W.
Schmid W.
Chem. Ber.
1951,
84:
204
37b
Theilacker W.
Berger W.
Popper P.
Chem. Ber.
1956,
89:
970. However, no NMR or MS data were provided
38 This compound has been previously synthesized using a different approach, see: Amatore C.
Jutand A.
Negre S.
Fauvarque JF.
J. Organomet. Chem.
1990,
390:
389
39 This compound has been previously synthesized using a different approach, see: Novikov AN.
Khalimova TA.
Zh. Vses. Khim. O-va. im. D. I. Mendeleeva
1962,
7:
698 ; Chem. Abstr. 1962 , 58 , 66196. However, no NMR or MS data were provided
40 This compound has been previously synthesized using a different approach, see ref. 25, 27b and 27c. See also: Ronlan A.
Coleman J.
Hammerich O.
Parker VD.
J. Am. Chem. Soc.
1974,
96:
845
This compound has been previously synthesized using a different approach though no spectroscopical data were given, see ref. 30a and:
41a
Jutand A.
Mosleh A.
Synlett
1993,
568
41b
Jutand A.
Mosleh A.
J. Org. Chem.
1997,
62:
261
42 The formation of this compound has been postulated as an undesired by-product in the synthesis of triarylmethane dyes; however, no analytical or structural data was given, see: Theilacker W.
Berger W.
Popper P.
Chem. Ber.
1956,
89:
970