Planta Med 2007; 73(4): 330-335
DOI: 10.1055/s-2007-967137
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Transport of Decursin and Decursinol Angelate across Caco-2 and MDR-MDCK Cell Monolayers: In vitro Models for Intestinal and Blood-Brain Barrier Permeability

Vamsi L. M. Madgula1 , Bharathi Avula1 , Niranjan V. L. Reddy1 , Ikhlas A. Khan1 , 2 , Shabana I. Khan1
  • 1National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, USA
  • 2Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS, USA
Weitere Informationen

Publikationsverlauf

Received: November 8, 2006

Accepted: February 11, 2007

Publikationsdatum:
19. März 2007 (online)

Abstract

Decursin (DE) and decursinol angelate (DA) were isolated from the roots of Angelica gigas (Apiaceae) and purified by HPLC. DE and DA have been reported to exhibit significant neuropharmacological activities, but their intestinal transport and permeability in terms of CNS penetration across the blood-brain barrier (BBB) are unknown. This study was undertaken to evaluate the in vitro intestinal and BBB transport of DE and DA using Caco-2 and MDR-MDCK cell monolayer models, respectively. The bidirectional transport of DE and DA across Caco-2 and MDR-MDCK monolayers was examined for 2 hours. Integrity of the monolayer was determined by TEER value and by monitoring the transport of Lucifer yellow (Ly) across the monolayers. Quantitation of DE and DA was performed by HPLC. DE and DA exhibited bidirectional transport with a Papp value in the range of 9.0 - 12.0 × 10 - 6 cm/sec and 7.2 - 11.7 × 10 - 6 cm/sec in Caco-2 and MDR-MDCK monolayers, respectively. The TEER values were in the range of 410 - 440 and 1170 - 1230 ohm cm2 for Caco-2 and MDR-MDCK monolayers, respectively. Ly measurement, the fluorescent marker of passive paracellular diffusion, resulted in Papp values of 2.5 - 5.0 × 10 - 6 in Caco-2 and 6.0 - 8.0 × 10 - 6 cm/sec in MDR-MDCK monolayers, confirming that the monolayer integrity was intact at the end of the experiment.

Abbreviations

Caco-2:human colonic adenocarcinoma

DA:decursinol angelate

DE:decursin

Ly:Lucifer yellow

MDCK:Madin-Darby canine kidney

MDR:multidrug resistant

Papp:apparent permeability

TEER:transepithelial electrical resistance

References

  • 1 Clapham A R, Tutin T G, Warburg E F. Flora of British Isles. London/Cambridge; The University Press 1952.
  • 2 GRIN data base, National Germplasm Resources laboratory, Beltsville, Maryland. Available at http://www.arisgrin.goov/cgi-bin/npgs/html/tax_search.pl?angelica. Accessed in 2006. 
  • 3 Chi H J, Kim H S. Studies on the components of Umbelliferae plants in Korea: pharmacological study of decursin, decursinol and nodakenin.  Kor J Pharmacogn. 1970;  1 25-32.
  • 4 Kang S Y, Lee K Y, Sung S H, Park M J, Kim Y C. Coumarins isolated from Angelica gigas inhibit acetyl cholinesterase: structure activity relationship.  J Nat Prod. 2001;  64 683-85.
  • 5 Lee S H, Shin D S, Kim J S, Oh K B, Kang S S. Antibacterial coumarins from Angelica gigas roots.  Arch Pharm Res. 2003;  26 449-52.
  • 6 Lee S, Lee Y S, Jung S H, Shin K H, Kim B K, Kang S S. Antitumor activity of decursinol angelate and decursin from Angelica gigas .  Arch Pharm Res. 2003;  26 727-30.
  • 7 Kang S Y, Lee K Y, Sung S H, Kim Y C. Four new neuroprotective dihydropyranocoumarins from Angelica gigas .  J Nat Prod. 2005;  68 56-9.
  • 8 Choi S S, Han K J, Lee H K, Han E J, Suh W H. Antinoceceptive profiles of crude extract from roots of Angelica gigas Nakai in various pain models.  Biol Pharm Bull. 2003;  26 1283-88.
  • 9 Yi W, Akoh C C, Fischer J, Krewer G. Absorption of anthocyanins from blueberry extracts by Caco-2 human intestinal epithelial cell monolayers.  J Agric Food Chem. 2006;  54 5651-58.
  • 10 Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport.  Adv Drug Delivery Rev. 1996;  22 67-84.
  • 11 Khan S I, Abourashed E A, Khan I A, Walker L A. Transport of harman alkaloids across Caco-2 cell monolayers.  Chem Pharm Bull (Tokyo). 2004;  52 394-7.
  • 12 Khan S I, Abourashed E A, Khan I A, Walker L A. Transport of parthenolide across human intestinal cells (Caco-2).  . 2003;  69 1009-12.
  • 13 Hilgers A R, Conradi R A, Burton P S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa.  Pharm Res. 1990;  7 902-10.
  • 14 Audus K L, Bartel R L, Hidalgo I J, Bochardt R T. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies.  Pharm Res. 1990;  7 435-51.
  • 15 Bohets H, Annaert P, Mannens G, Beijsterveldt L, Anciaux K, Verboven P. et al . Strategies for absorption screening in drug discovery and development.  Curr Top Med Chem.. 2001;  1 367-83.
  • 16 Gumbleton M, Audus K L. Progress and limitations in the use of in vitro cell cultures to serve as the permeability screen for the blood-brain barrier.  J Pharm Sci. 2001;  90 1681-98.
  • 17 Wang Q, Rager D J, Weinstein K, Kardos S P, Dobson G L, Li J. et al . Evaluation of the MDR-MDCK cell line as a permeability screen for the blood brain barrier.  Int J Pharm. 2005;  288 349-59.
  • 18 Lee J P, Chang S Y, Park S Y. Validation of analysis methods for decursin and decursinol angelate of Angelica gigants radix by reversed-phase liquid chromatography.  Nat Prod Sci. 2004;  10 262-7.
  • 19 Stewart B H, Chan O H, Lu R H, Reyner E L, Schmid H L, Hamilton B A. et al . Comparision of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans.  Pharm Res. 1995;  12 693-9.
  • 20 Gres M C, Julian B, Bourrie M, Meunier V, Roques C, Berger M et a l, Boulenc X. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line.  . 1998;  15 726-33.
  • 21 Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells.  . 1991;  175 880-5.
  • 22 Camenisch G, Alsenz J, Waterbeemd H, Folkers G. Estimation of peremeability by passive diffussion through Caco-2 cell monolayers using the drugs liphophilicity and molecular weight.  Eur J Pharm Sci. 1998;  6 313-9.
  • 23 Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst R D. et al . In vitro models for blood-brain barrier.  Toxicol In Vitro. 2005;  19 299-334.

Shabana I. Khan

National Center for Natural Products Research

School of Pharmacy

The University of Mississippi

University

MS 38677

USA

Telefon: +01-662-915-1041

Fax: +01-662-915-7062

eMail: skhan@olemiss.edu