Abstract
Puerarin, a natural isoflavonoid found in Chinese Pueraria lobata (Wild.) Ohwi, has received increasing attention because of its possible role in the prevention of osteoporosis. However, the relationship between puerarin and bone formation remains unknown. In the present study, rat osteoblasts isolated from newborn Wistar rats were used to investigate the effect of puerarin on osteoblasts, and its possible molecular mechanism. Data showed that puerarin caused a significant increase in cell viability, alkaline phosphatase (ALP) activity and mineral nodules formation in osteoblasts, suggesting that puerarin had a stimulatory effect on osteoblastic bone formation. This functional improvement by puerarin was accompanied by activation and nuclear translocation of Akt. Furthermore, puerarin-stimulated osteoblastic growth, Akt activation and redistribution were significantly blocked by the specific PI3K inhibitor, LY294002. These results strongly suggested that puerarin stimulated osteoblastic proliferation and Akt activation in a PI3K-dependent manner. In summary, puerarin derived from Chinese Pueraria lobata (Wild.) Ohwi can promote bone formation in cultured rat osteoblasts, which might be mediated by activation of the PI3K/Akt pathway.
Abbreviations
DMEM:Dulbecco's modification of Eagel's medium
PBS:phosphate buffered saline
DMSO:dimethyl sulfoxide
EDTA:ethylene diamine tetraacetic acid
SDS:sodium dodecyl sulfate
SDS-PAGE:sodium dodecylsulfate polyacrylamide gel electrophoresis
FITC:fluorescein isothiocyanate
HRP:horseradish peroxidase
PI3K:phosphatidylinositol 3-kinase
Key words
Puerarin - osteoblasts - bone formation - PI3K/Akt pathway
References
-
1
Genant H K, Baylink D J, Gallagher J C.
Estrogens in the prevention of osteoporosis in postmenopausal women.
Am J Obstet Gynecol.
1989;
161
1842-6.
-
2
Lindsay R, Hart D M, Aitken J M, Macdonald E B, Anderson J, Clarke A C.
Long-time prevention of postmenopausal osteoporosis by estrogen.
Lancet.
1976;
1
1034-41.
-
3
Persson I, Weiderpass E, Bergkvist L, Bergstrom R, Schairer C.
Risks of breast and endometrial cancer after estrogen and estrogen-progestin replacement.
Cancer Causes Control.
1999;
10
253-60.
-
4
Xu X H, Zhang S, Zhang L, Yan W M, Zheng X X.
The neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats.
Planta Med.
2005;
71
585-91.
-
5
Hsu F L, Liu I M, Kuo D H, Chen W C, Su H C, Cheng J T.
Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats.
J Nat Prod.
2003;
66
788-92.
-
6
Song X P, Chen P P, Chai X S.
Effects of puerarin on blood pressure and plasma renin activity in spontaneously hypertensive rats.
Zhongguo YaoLi XueBao.
1988;
9
55-8.
-
7
Xiao L Z, Huang Z, Ma S C, Zen Z, Luo B, Lin X. et al .
Study on the effect and mechanism of puerarin on the size of infarction in patients with acute myocardial infarction.
Zhongguo ZhongXiYi JieHe ZaZhi.
2004;
24
790-2.
-
8
Duan S, Li Y F, Luo X L.
Effect of puerarin on heart function and serum oxidized-LDL in the patients with chronic cardiac failure.
Hunan YiKe DaXue XueBao.
2000;
25
176-8.
-
9
Zheng G L, Zheng D S.
Estrogen-like effects of puerarin and isoflavones from Pueraria lobata
.
Zhong Yao Cai.
2002;
25
566-8.
-
10
Zheng G L, Fang X L.
Isoflavones from Pueraria lobata inhibit the loss of mineral and trance elements in tibia of OVX rats.
Zhong Cao Yao.
2001;
32
422-5.
-
11
Franke T F, Yang S I, Chan T O, Datta K, Kazlauskas A, Morrison D K. et al .
The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase.
Cell.
1995;
81
727-36.
-
12
Coffer P J, Jin J, Woodgett J R.
Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation.
Biochem J.
1998;
335
1-13.
-
13
Yang L, Wang L, Lin H K, Kan P Y, Xie S, Tsai M Y. et al .
Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells.
Biochem Biophys Res Commun.
2003;
305
462-9.
-
14
Chan T O, Rittenhouse S E, Tsichlis P N.
AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation.
Annu Rev Biochem.
1999;
68
965-1014.
-
15
Brazil D P, Park J, Hemmings B A.
PKB binding proteins. Getting in on the Akt.
Cell.
2002;
111
293-303.
-
16
You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M. et al .
FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal.
.
2006;
203
1657-63.
-
17
Nicholson K M, Quinn D M, Kellett G L, Warr J R.
LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells.
Cancer Lett.
2003;
190
31-6.
-
18
Yip-Schneider M T, Wiesenauer C A, Schmidt C M.
Inhibition of the phosphatidylinositol 3’-kinase signaling pathway increases the responsiveness of pancreatic carcinoma cells to sulindac.
J Gastrointest Surg.
2003;
7
354-63.
-
19
Borgatti P, Martelli A M, Bellacosa A, Casto R, Massari L, Capitani S. et al .
Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors.
FEBS Lett.
2000;
477
27-32.
-
20
Danciu T E, Adam R M, Naruse K, Freeman M R, Hauschka P V.
Calcium regulates the PI3K-Akt pathway in stretched osteoblasts.
FEBS Lett.
2003;
536
193-7.
-
21
Kang H Y, Cho C L, Huang K L, Wang J C, Hu Y C, Lin H K. et al .
Nongenomic androgen activation of phosphatidylinositol 3-kinase/Akt signaling pathway in MC3T3-E1 osteoblasts.
J Bone Miner Res.
2004;
19
1181-90.
-
22
Noda T, Tokuda H, Yoshida M, Yasuda E, Hanai Y, Takai S. et al .
Possible involvement of phosphatidylinositol 3-kinase/Akt pathway in insulin-like growth factor-I-induced alkaline phosphatase activity in osteoblasts.
Horm Metab Res.
2005;
37
270-4.
-
23
Vlahos C J, Matter W F, Hui K Y, Brown R F.
A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).
J Biol Chem.
1994;
269
5241-8.
-
24
Chang H, Jin T Y, Jin W F, Gu S Z, Zhou Y F.
Modulation of isoflavones on bone-nodule formation in rat calvaria osteoblasts in vitro
.
Biomed Environ Sci.
2003;
16
83-9.
-
25
Kanno S, Hirano S, Kayama F.
Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells.
Toxicology.
2004;
196
137-45.
-
26
Fonseca D, Ward W E.
Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice.
Bone.
2004;
35
489-97.
-
27
Ishida H, Uesugi T, Hirai K, Toda T, Nukaya H, Yokotsuka K. et al .
Preventive effects of the plant isoflavones, daizin and genistin, on bone loss in ovariectomized rats fed a calcium-deficient diet.
Biol Pharm Bull.
1998;
21
62-6.
-
28
Morabito N, Crisafulli A, Vergara C, Gaudio A, Lasco A, Frisina N. et al .
Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo controlled study.
J Bone Miner Res.
2002;
17
1904-12.
-
29
Jia T L, Wang H Z, Xie L P, Wang X Y, Zhang R Q.
Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production.
Biochem Pharmacol.
2003;
65
709-15.
-
30
Lee K H, Choi E M.
Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells.
Biol Pharm Bull.
2005;
28
1948-53.
-
31
Sugimoto E, Yamaguchi M.
Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells.
Biochem Pharmacol.
2000;
59
471-5.
-
32
Krasilnikov M A.
Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation.
Biochemistry (Mosc).
2000;
65
59-67.
Prof. Xiaoxiang Zheng
Department of Biomedical Engineering
Key Laboratory of Biomedical Engineering of Ministry of Education
Zhejiang University
Zheda Road 38
310027 Hangzhou
China
Phone: +86-571-8795-1091
Fax: +86-571-8795-1676
Email: zxx@mail.hz.zj.cn