Subscribe to RSS
DOI: 10.1055/s-2007-967188
© Georg Thieme Verlag KG Stuttgart · New York
Biocatalysis of the Anticancer Sipholane Triterpenoids
Publication History
Received: December 20, 2006
Revised: March 9, 2007
Accepted: March 13, 2007
Publication Date:
07 May 2007 (online)

Abstract
The Red Sea sponge Callyspongia (= Siphonochalina) siphonella is a rich source of sipholane triterpenoids. Biocatalysis of the major sipholanes, sipholenol A (1) and sipholenone A (2), respectively, by Mucor ramannianus ATCC 9628 and Cunninghamella elegans ATCC 7929 afforded four new metabolites 3 - 6 along with sipholenol G and 28-hydroxysipholenol A. Major sipholanes along with their biocatalytic products were investigated for their antiproliferative activity against the highly malignant +SA mouse mammary epithelial cell line. Sipholenone A (2) was the most active sipholane inhibiting +SA cell proliferation with an IC50 value of 20 - 30 μM. Sipholenone A, also, showed cytotoxicity against MCF-7 at a dose of 0.9 μM and antiangiogenic activity in the CAM (chorio-allantoic membrane) assay. This is the first report on anticancer activity of these triterpenoids.
Key words
Red Sea - Callyspongia siphonella - Callyspongiidae - sipholanes - biocatalysis - Mucor ramannianus - Cunninghamella elegans - antiproliferative - +SA mouse mammary epithelial cells - MCF-7 cells - breast cancer - antiangiogengic - CAM
- Supporting Information for this article is available online at
- Supporting Information .
References
- 1 Clark A M, McChesney J D, Hufford C D. The use of microorganisms for the study of drug metabolism. Med Res Rev. 1985; 5 231-53.
- 2 El Sayed K A, Hamann M T, Waddling C A, Jensen C, Lee S K, Dunstan C A. et al . Structurally novel bioconversion products of the marine natural product sarcophine effectively inhibit JB6 cell transformation. J Org Chem. 1998; 63 7449-55.
- 3 El Sayed K A, Yousaf M, Hamann M T, Avery M A, Kelly M, Wipf P. Microbial and chemical transformation studies of the bioactive marine sesquiterpene S (+)-curcuphenol and curcudiol from a deep reef collection of the Jamaican sponge Didicus oxeata . J Nat Prod. 2002; 65 1547-53.
- 4 Thayer A M. Enzymes at work: Rapid screening and optimization of enzymatic activity, along with available easy-to-use enzymes, are making biocatalysis a handy tool for chiral synthesis. Chem Eng News. 2006; 84 16-25.
- 5 Newman D J, Cragg G M. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. 2004; 67 1216-38.
- 6 Shmueli U, Carmely S, Groweiss A, Kashman Y. Sipholenol and sipholenone, two new triterpenes from the marine sponge Siphonochalina siphonella (Levi). Tetrahedron Lett. 1981; 22 709-12.
- 7 Carmely S, Kashman Y. The sipholanes: a novel group of triterpenes from the marine sponge Siphonochalina siphonella . J Org Chem. 1983; 48 3517-25.
- 8 Carmely S, Loya Y, Kashman Y. Siphonellinol, a new triterpene from the marine sponge Siphonochalina siphonella . Tetrahedron Lett. 1983; 24 3673-6.
- 9 Carmely S, Kashman Y. Neviotine-A, a new triterpene from the Red Sea sponge Siphonochalina siphonella . J Org Chem. 1986; 51 784-8.
- 10 Kashman Y, Yosief T, Carmeli S. New triterpenoids from the Red Sea sponge Siphonochalina siphonella . J Nat Prod. 2001; 64 175-80.
-
11 Jain S, Laphookhieo S, Shi Z, Fu L, Akiyama S, Chen Z. et al .Reversal of P-glycoprotein-mediated multidrug resistance by sipholane triterpenoids. J Nat Prod, in press.
- 12 Rudi A, Aknin M, Gaydou E M, Kashman Y. Sodwanones K, L, and M; new triterpenes from the marine sponge Axinella weltneri . J Nat Prod. 1997; 60 700-3.
- 13 Funel-Le Bon C, Berrue F, Thomas O P, Reyes F, Amade P. Sodwanone S, a triterpene from the marine sponge Axinella weltneri . J Nat Prod. 2005; 68 1284-7.
- 14 Dai J, Fishback J A, Zhou Y, Nagle D G. Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells. J Nat Prod. 2006; 69 1715-20.
- 15 Mabjeesh N J, Willard M T, Frederickson C E, Zhong H, Simons J W. Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3’-kinase/protein kinase B in prostate cancer cells. Clin Cancer Res. 2003; 9 2416-25.
- 16 McIntyre B S, Briski K P, Gapor A, Sylvester P W. Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells. Proc Soc Exp Biol Med. 2000; 224 292-301.
- 17 Sylvester P W, Shah S J. Mechanisms mediating the antiproliferative and apoptotic effects of vitamin E in mammary cancer cells. Front Biosci. 2005; 10 699-709.
- 18 Carmely S, Kashman Y. The study of sipholanes by two-dimensional NMR spectroscopy. Magn Reson Chem. 1986; 24 332-6.
-
19 West D C, Thompson W D, Sells P G, Burbridge M F. Angiogenesis assays using chick chorioallantoic membrane. In: Murray JC, editor
Angiogenesis Protocols. Totowa; Humana Press 2001: 107-29.
Prof. Dr. Khalid El Sayed
Department of Basic Pharmaceutical Sciences
College of Pharmacy
University of Louisiana at Monroe
700 University Avenue
Monroe
Louisiana 71209
USA
Phone: +1-318-342-1725
Fax: +1-318-342-1737
Email: elsayed@ulm.edu
- www.thieme-connect.de/ejournals/toc/plantamedica