Abstract
Polyether units are a frequent heterocyclic fragment present in numerous natural products of great biological importance and constitute significant synthons for the synthesis of pharmacologically relevant compounds. Likewise, compounds having stereochemically defined alkyl-branched hydrocarbon chains are widespread in nature and the development of new synthetic methodologies to achieve their preparation in high yields and levels of stereocontrol is currently a challenging endeavour in organic synthesis. In this account, we describe our own approach to the stereoselective synthesis of bioactive compounds using the Nicholas reaction, the discovery of unexpected reaction pathways as well as some unreported results. The scope of the title reaction, within our research interests, and its synthetic applications are outlined. Reference to important related work from others in the field is also included.
1 Introduction
2 Synthesis of Symmetrical and Unsymmetrical Linear Propargylic Ethers
3 Synthesis of Cyclic Propargylic Ethers
3.1 Primary and Secondary Alcohols as Nucleophiles
3.2 Epoxides as Nucleophiles
4 Asymmetric Intermolecular Nicholas Reaction
5 Synthesis of Homopropargylic Ketones
6 Intramolecular Propargylic Reduction
7 Summary
Key words
alkynes - cobalt complexes - Nicholas reaction - stereoselective synthesis - natural products - ethers
References and Notes 1 Present address: Departamento de Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
2 Present address: Phenomix Corporation, 5871 Oberlin Dr., San Diego, CA 92126, U.S.A.
3a
Nicolaou KC.
Sorensen EJ. In Classics in Total Synthesis
Wiley-VCH;
Weinheim:
1996.
3b
Nicolaou KC.
Snyder SA. In Classics in Total Synthesis
Vol. 2:
Wiley-VCH;
Weinheim:
2003.
4a
Asymmetric Synthesis
Morrison JD.
Academic Press;
New York:
1985.
4b
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
5a
Yasumoto T.
Murata M.
Chem. Rev.
1993,
93:
1897
5b
Gallimore AR.
Spencer JB.
Angew. Chem. Int. Ed.
2006,
45:
4406
For recent reviews on the synthesis of marine polycyclic ethers, see:
6a
Inoue M.
Chem. Rev.
2005,
105:
4379
6b
Nakata T.
Chem. Rev.
2005,
105:
4314
7
Álvarez E.
Díaz MT.
Pérez R.
Ravelo JL.
Regueiro A.
Vera JA.
Zurita D.
Martín JD.
J. Org. Chem.
1994,
59:
2848
8a
Nicolaou KC.
Hwang C.-K.
Duggan ME.
Reddy KB.
Marron BE.
Macgarry DG.
J. Am. Chem. Soc.
1986,
108:
6800
8b
Schreiber SL.
Kelly SE.
Porco JA.
Sammakia T.
Suh EM.
J. Am. Chem. Soc.
1988,
110:
6210
8c
Robinson RA.
Clark JS.
Holmes AB.
J. Am. Chem. Soc.
1993,
115:
10400
9
Kotsuki H.
Synlett
1992,
97
10a
Yamada J.
Asano T.
Kadota I.
Yamamoto Y.
J. Org. Chem.
1990,
55:
6066
10b
Fum GC.
Grubbs RH.
J. Am. Chem. Soc.
1992,
114:
5426
10c
Berger D.
Overman LE.
Renhowe PA.
J. Am. Chem. Soc.
1993,
31:
9305
11a
Boivin TLB.
Tetrahedron
1987,
43:
3309
11b
Nicolaou KC.
Prasad CVC.
Somers PK.
Hwang C.-K.
J. Am. Chem. Soc.
1989,
111:
5335
11c
Suzuki T.
Sato O.
Hirama M.
Tetrahedron Lett.
1990,
37:
4349
12
Dictionary of Natural Products
4th Suppl., Vol. 11:
Buckingham J.
Chapman & Hall;
New York:
1998.
13
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
14
Faulkner DJ.
Nat. Prod. Rep.
1999,
16:
155
15a
Abiko A.
Masamune S.
Tetrahedron Lett.
1996,
37:
1081
15b
Birkbeck AA.
Enders D.
Tetrahedron Lett.
1998,
39:
7823
16a
Norte M.
Fernández JJ.
Padilla A.
Tetrahedron Lett.
1994,
35:
3413
16b
Calter MA.
Guo X.
Liao W.
Org. Lett.
2001,
3:
1499
16c
Calter MA.
Guo X.
Liao W.
J. Org. Chem.
2001,
66:
7500
For comprehensive reviews on the chemistry uses of cobalt-complexed propargylic cations and related, see:
17a
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
17b
Welker ME.
Curr. Org. Chem.
2001,
5:
785
17c
Green JR.
Curr. Org. Chem.
2001,
5:
809
17d
Müller TJJ.
Eur. J. Org. Chem.
2001,
2021
17e
Teobald BJ.
Tetrahedron
2002,
58:
4133
17f
Fryatt R.
Christie SDR.
J. Chem. Soc., Perkin Trans. 1
2002,
447
17g For an interesting study on site selectivity of nucleophile incorporation in 3-acetoxycyclohept-1-en-4-ynedicobalt hexacarbonyl, see: DiMartino J.
Green JR.
Tetrahedron
2006,
62:
1402
18
Gachkova N.
Cassel J.
Leue S.
Kann N.
J. Comb. Chem.
2005,
7:
449 ; and references therein
19a
Schore NE. In
Comprehensive Organometallic Chemistry II
Vol. 12:
Hegedus LS.
Pergamon;
Oxford:
1995.
Chapter 7.2.
p.403
19b
Krafft ME.
Cheung YY.
Wright C.
Cali R.
J. Org. Chem.
1996,
61:
3912-3915 ; and references cited therein
20 For the first approach to the induction of enantioselectivity in the Nicholas C-C coupling version, see: Montaña AM.
Cano M.
Tetrahedron
2002,
58:
933
21
Schreiber SL.
Klimas MT.
Sammakia T.
J. Am. Chem. Soc.
1987,
109:
5749
22
Muehldorf AV.
Guzmán-Pérez A.
Kluge AE.
Tetrahedron Lett.
1994,
35:
8755
23
Melikan GC.
Bright S.
Monroe T.
Handcastle KI.
Ciurash J.
Angew. Chem., Int. Ed. Engl.
1998,
37:
161
24
Bradley DH.
Khan MA.
Nicholas KM.
Organometallics
1989,
8:
554
25
Caffyn AJM.
Nicholas KM.
J. Am. Chem. Soc.
1993,
115:
6438
26
Betancort JM.
Martín VS.
Padrón JM.
Palazón JM.
Ramírez MA.
Soler MA.
J. Org. Chem.
1997,
62:
4570 ; and references cited therein
27a
March J.
Advanced Organic Chemistry
John Wiley & Sons;
New York:
1992.
27b
Brummond KM.
Kent JL.
Tetrahedron
2000,
56:
3263
28
Jenner G.
Tetrahedron Lett.
1988,
29:
2445
29 For an extraordinary application of the Williamson reaction to the preparation of alcohol protecting groups, see: Green TW.
Protective Groups in Organic Synthesis
John Wiley & Sons;
New York:
1999.
30
Díaz DD.
Martín VS.
Tetrahedron Lett.
2000,
41:
9993
31
Díaz DD.
Martín T.
Martín VS.
Org. Lett.
2001,
3:
3289
32 For the first example of the synthesis of 1,4-difunctionalized but-2-yne complexes by a double Nicholas reaction, see: Seiichi T.
Takumichi S.
Kunio O.
Synlett
1992,
70
33a
Palazón JM.
Martín VS.
Tetrahedron Lett.
1995,
36:
3549
33b
Betancort JM.
Martín T.
Palazón JM.
Martín VS.
J. Org. Chem.
2003,
68:
3216
34 For an efficient synthesis of oxaspiro[m.n] skeletons based on the Nicholas reaction, see: Chisato M.
Haruhisa Y.
Misato S.
Miyoji H.
Tetrahedron
2002,
58:
2755
35
Betancort JM.
Rodríguez CM.
Martín VS.
Tetrahedron Lett.
1998,
39:
9773
36 For the influence of a secondary carbinol to control the cyclization stereochemistry in isolated rings, see: Díaz DD.
Betancort JM.
Crisóstomo FRP.
Martín T.
Martín VS.
Tetrahedron
2002,
58:
1913
37
Katsuki T.
Martín VS.
Organic Reactions
Vol. 48:
Paquette LA.
Wiley;
New York:
1996.
p.1-299
38
Palazón JM.
Soler MA.
Martín VS.
Tetrahedron Lett.
1993,
34:
5471
39
Ramírez MA.
Padrón JM.
Palazón JM.
Martín VS.
J. Org. Chem.
1997,
62:
4584
40
Nicolaou KC.
Hwang C.-K.
Marron BE.
DeFress SA.
Couladourus EA.
Abe Y.
Carroll PJ.
Snyder JP.
J. Am. Chem. Soc.
1990,
112:
3040
41
Crisóstomo FRP.
Carrillo R.
Martín T.
Martín VS.
Tetrahedron Lett.
2005,
45:
2829
42
Díaz DD.
Ramírez MA.
Ceñal JP.
Saad R.
Tonn CE.
Martín VS.
Chirality
2003,
15:
148
43
Takase M.
Morikawa T.
Abe H.
Inouye M.
Org. Lett.
2003,
5:
625
44
Christie SDR.
Davoile RJ.
Elsegood MRJ.
Fryatt R.
Jones RCF.
Pritthard GJ.
Chem. Commun.
2004,
2474
45
Lebold TP.
Carson CA.
Kerr MA.
Synlett
2006,
364
46
Crisóstomo FRP.
Martín T.
Martín VS.
Org. Lett.
2004,
6:
565
47 (a) Unpublished results. (b) X-ray data can be obtained directly from the authors upon request.
48
Davies JE.
Hope-Weeks LJ.
Mays MJ.
Raithby PR.
Chem. Commun.
2000,
1411
49
Shea KM.
Closser KD.
Quintal MM.
J. Org. Chem.
2005,
70:
9088
50a
Lee H.
Kim H.
Baek S.
Kim S.
Kim D.
Tetrahedron Lett.
2003,
44:
6609
50b
Carreno MC.
Mazery RD.
Urbano A.
Colobert F.
Solladié G.
Org. Lett.
2004,
6:
297
50c
Lee HJ.
Kim HS.
Yoon T.
Kim B.
Kim S.
Kim H.-D.
Kim D.
J. Org. Chem.
2005,
70:
8723
51 We had difficulties separating both diastereoisomers. At the present time we cannot ensure which isomer is predominant.
52 Montmorillonite K-10 has been recently reported as a convenient acid component in the Nicholas reaction, see ref. 41.
53
Ortega N.
Martín T.
Martín VS.
Org. Lett.
2006,
8:
871
The endo -complexes need reductive decomplexation procedures to successfully achieve the synthesis of the corresponding cyclic systems:
54a
Hosokawa S.
Isobe M.
Tetrahedron Lett.
1998,
39:
2609
54b
Nakamura T.
Matsui T.
Tanino K.
Kuwajima I.
J. Org. Chem.
1997,
62:
3032
55
Young DG.
Burlison JA.
Peters U.
J. Org. Chem.
2003,
68:
3494
56
Kira K.
Tanda H.
Hamajima A.
Baba T.
Takai S.
Isobe M.
Tetrahedron
2002,
58:
6485 ; and references cited therein
57a
Isobe M.
Yenjai C.
Tanaka S.
Synlett
1994,
11:
916
57b
Yenjai C.
Isobe M.
Tetrahedron
1998,
54:
916
57c
Isobe M.
Hosokawa S.
Kira K.
Chem. Lett.
1996,
473
57d
Hosokawa S.
Isobe M.
J. Org. Chem.
1999,
64:
37
57e
Saeeng R.
Isobe M.
Tetrahedron Lett.
1999,
40:
1911
57f For a review, see: Isobe M.
Nishizawa R.
Hosokawa S.
Nishikawa T.
Chem. Commun.
1998,
2665
58a
Mukai C.
Sugimoto Y.-I.
Miyazawa K.
Yamaguchi S.
Hanaoka M.
J. Org. Chem.
1998,
63:
6281
58b
Mukai C.
Yamaguchi S.
Ichiryu T.
Hanaoka M.
J. Org. Chem.
2000,
65:
6761
59
Mukai C.
Yamaguchi S.
Sugimoto Y.
Miyakoshi N.
Kasamatsu E.
Hanaoka M.
Tetrahedron
2000,
56:
2203
60
Quintal MM.
Closser KD.
Shea KM.
Org. Lett.
2004,
6:
4949
61
Schreiber SL.
Sammakia T.
Crowe WE.
J. Am. Chem. Soc.
1986,
108:
3128
62 These complexes possess an outstanding resolution under silica gel chromatography and both diastereoisomers can be readily separated in this way.
In order to avoid elimination by-products, all reactions were carried out at -20 °C. See:
63a
Saksena AK.
Green MJ.
Mangiaracina P.
Wong JK.
Kreutner Gulbenkian AR.
Tetrahedron Lett.
1985,
26:
6423
63b
Melikyan GG.
Mineif O.
Vostrowsky O.
Bestmann HJ.
Synthesis
1991,
633
63c
Berger D.
Overman LE.
J. Am. Chem. Soc.
1997,
119:
2446
64a
Mancuso AJ.
Huang S.-L.
Swern D.
J. Org. Chem.
1978,
43:
2480
64b
Schmieder-van de Vondervoort L.
Bouttemy S.
Padrón JM.
Le Bras J.
Muzart J.
Alsters PL.
Synlett
2002,
243
65
Majetich G.
Zhang Y.
Dreyer G.
Tetrahedron Lett.
1993,
34:
449
66a
Kende AS.
Fludzinski P.
Hill JH.
Swenson W.
Clardy J.
J. Am. Chem. Soc.
1984,
106:
3551
66b
Nagasawa T.
Taya K.
Kitamura M.
Suzuki K.
J. Am. Chem. Soc.
1996,
118:
8949
67
Soler MA.
Martín VS.
Tetrahedron Lett.
1999,
40:
2815
68
Saksena AK.
Green MJ.
Mangiaracina P.
Wong JK.
Kreutner W.
Gulbenkian AR.
Tetrahedron Lett.
1985,
26:
6423
69
Díaz DD.
Martín VS.
Tetrahedron Lett.
2000,
41:
743
70
Díaz DD.
Martín VS.
Org. Lett.
2000,
2:
335
71a
Brandsma L. In
Preparative Acetylenic Chemistry
Elsevier;
Amsterdam:
1988.
p.39-40
71b
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.271-292
72
Díaz DD.
Ramírez MA.
Martín VS.
Chem. Eur. J.
2006,
12:
2593
73
Díaz DD.
Martín VS.
J. Org. Chem.
2000,
65:
7896
74
Díaz DD.
Crisóstomo FRP.
Martín VS.
Isr. J. Chem.
2001,
41:
297