References and Notes
1a
Lewis JR.
Nat. Prod. Rep.
2002,
19:
223
1b
Jin Z.
Li Z.
Huang R.
Nat. Prod. Rep.
2002,
19:
454
1c
Jin Z.
Nat. Prod. Rep.
2003,
20:
584
1d
Yeh VSC.
Tetrahedron
2004,
60:
11995
1e
Jin Z.
Nat. Prod. Rep.
2005,
22:
196
1f
Jin Z.
Nat. Prod. Rep.
2006,
23:
464
2a
Lipshutz BH.
Chem. Rev.
1986,
86:
795
2b
Talley JJ.
Bertenshaw SR.
Brown DL.
Carter JS.
Graneto MJ.
Koboldt CM.
Masferrer JL.
Norman BH.
Rogier DJ.
Zweifel BS.
Seibert K.
Med. Res. Rev.
1999,
19:
199
2c
Wasserman HH.
McCarthy KE.
Prowse KS.
Chem. Rev.
1986,
86:
845
3a
Tarraga A.
Molina P.
Curiel D.
Velasco MD.
Organometallics
2001,
20:
2145
3b
Tarraga A.
Molina P.
Curiel D.
Velasco MD.
Tetrahedron
2001,
57:
6765
4
Crow MD.
Hodgkin JH.
Tetrahedron Lett.
1963,
4:
85
5
Burque B.
Parkins H.
Talbot AM.
Heterocycles
1979,
12:
349
6
Axerold B.
Belzile JR.
J. Org. Chem.
1958,
23:
919
7a
Bhate DS.
Hulyalker RK.
Menon SK.
Experientia
1960,
16:
504
7b
Joshi BS.
Taylor WI.
Bathe DS.
Karmarkar SS.
Tetrahedron
1963,
19:
1473
7c
Noltenmeyer M.
Sheldrick GM.
Hoppe H.-U.
Zeeck A.
J. Antibiot.
1982,
35:
549
8a
Takahashi S.
Matsunaga T.
Hasegawa C.
Saito H.
Fujita D.
Kiuchi F.
Tsuda Y.
Chem. Pharm. Bull.
1998,
46:
1527
8b
Nishida A.
Fuwa M.
Fijikawa Y.
Nakahara E.
Furuno A.
Nakagawa M.
Tetrahedron Lett.
1998,
39:
5938
9a
Guella G.
Mancini I.
N’Diaye I.
Pietra F.
Helv. Chim. Acta
1994,
77:
1999
9b
N’Dieye I.
Guella G.
Mancini I.
Pietra F.
Tetrahedron Lett.
1996,
37:
3049
10a
Gololobov YG.
Kasukhin L.
Tetrahedron
1992,
48:
1353
10b
Eguchi S.
Matsushita K.
Yamashita K.
Org. Prep. Proced. Int.
1992,
209
10c
Molina P.
Vilaplana MJ.
Synthesis
1994,
1197
10d
Wammhoff H.
Richardt G.
Stölben S.
Adv. Heterocycl. Chem.
1999,
64:
159
10e
Eguchi S.
Okano T.
Okawa T.
Rec. Res. Dev. Org. Chem.
1997,
1:
337
11a
Fresneda PM.
Molina P.
Synlett
2004,
1
11b
Eguchi S.
ARKIVOC
2005,
(ii):
98
12a
Fresneda PM.
Molina P.
Delgado S.
Bleda JA.
Tetrahedron Lett.
2000,
41:
4777
12b
Molina P.
Fresneda PM.
Delgado S.
J. Org. Chem.
2003,
68:
489
12c
Fresneda PM.
Delgado S.
Francesch A.
Manzanares I.
Cuevas C.
Molina P.
J. Med. Chem.
2006,
49:
1217
13a
Zbiral E.
Bauer E.
Stroh J.
Monatsh. Chem.
1971,
102:
168
13b
Molina P.
Fresneda PM.
Almendros P.
Synthesis
1993,
54
13c
Molina P.
Fresneda PM.
Almendros P.
Heterocycles
1993,
36:
2255
14a
Fresneda PM.
Molina P.
Sanz MA.
Synlett
2001,
218
14b
Fresneda PM.
Molina P.
Sanz MA.
Synlett
2000,
1190
15
Croce DP.
Ferraccioli R.
Ritieni A.
Synthesis
1990,
212
16
Sheehan JC.
Chapman DW.
Roth RW.
J. Am. Chem. Soc.
1952,
74:
3822
17
2-[(
S
)-1-{5-[
N
-(Methoxymethyl)-1
H
-indol-3-yl]oxazol-2-yl}-2-phenylethyl]isoindoline-1,3-dione (
7).
To a solution of 3-(α-azidoacetyl) indole 5 (0.2 g, 0.82 mmol) in dry THF (32 mL), n-tributylphosphine (0.3 mL, 1.23 mmol) was added dropwise at 0 °C under N2. Then, a solution of (S)-N-phthaloylphenylalanyl chloride 6 (0.26 g, 0.82 mmol) in the same solvent (20 mL) was added. The resultant mixture was stirred at r.t. for 1 h, and then dry Et3N (0.17 mL, 1.23 mmol) was added and stirred for 2 h. The resultant solution was concentrated to dryness under reduced pressure and the residue was chromatographed on a silica gel column using CH2Cl2-EtOAc (8:2) as eluent to give 7 (0.27 g, 70% yield). Mp 157-160 °C 1H NMR (300 MHz, CDCl3): δ = 3.17 (s, 3 H, OCH3), 3.79 (m, 2 H, CH2), 5.37 (s, 2 H, OCH2), 5.78 (dd, 1 H, J = 10.2, 6.3 Hz, CH), 7.08-7.22 (m, 8 H, H-5, H-6, H-4′, 2 Ho, 2 Hm and Hp), 7.37 (s, 1 H, H-2), 7.41 (d, 1 H, J = 8.1 Hz, H-7), 7.59 (dd, 2 H, J = 5.4, 3.0 Hz, 2 Hm′’), 7.68 (d, 1 H, J = 7.8 Hz, H-4), 7.71 (dd, 2 H, J = 5.4, 3.0 Hz, 2 Ho′). 13C NMR (75 MHz, CDCl3): δ = 35.6 (CH2), 49.3 (CH), 56.0 (OCH3), 77.6 (OCH2), 105.3 (C-3), 110.4 (C-7), 120.1 (C-4), 120.6 (C-4′), 121.4 (C-7), 121.4 (C-5), 123.2 (C-6), 123.4 (Co′), 125.2 (C-3a), 125.6 (C-2), 126.9 (Cp), 128.6 (Cm), 129.0 (Co), 131.6 (C-i′), 134.0 (Cm′), 136.5 (C-7a), 136.6 (Ci), 147.9 (C-5′), 158.4 (C-2′), 167.4 (CO). MS (FAB positive): m/z (%) = 478 (100) [M + 1], 477 (75) [M+], 326 (29) [M+ - Bn], 331 ]M+ - phthalimido]. Anal. Calcd for C29H23N3O4: C, 72.94; H, 4.85; N, 8.80. Found: C, 72.86; H, 4.80; N, 8.85.
18
Shalev DE.
Chiacchiera SM.
Radkowsky AE.
Kosower EM.
J. Org. Chem.
1996,
61:
1689
19
Aurelio L.
Brownlee TC.
Hughes AB.
Chem. Rev.
2004,
104:
5823 ; and references cited therein
20
Almazole C (
1).
To a suspension of 7 (0.32 g, 0.68 mmol) in EtOH (20 mL), hydrazine monohydrate (0.14 mL, 2.68 mmol) was added at 0 °C. The reaction mixture was stirred for 36 h at r.t. The precipitated solid was separated by filtration, slurried with CH2Cl2 and filtered. The filtrate was dried (MgSO4) and the solvent removed under reduce pressure to give (S)-1-{5-[N-(Methoxymethyl)-1H-indol-3-yl]oxazol-2-yl}-2-phenyl-ethanamine (8, 0.21 g, 90% yield). A mixture of the amine 8 (0.4 g, 1,16 mmol), formaldehyde 37% (0.86 mL, 9.54 mmol) and 10% Pd on charcoal (0.24 g, 2.3 mmol) in EtOH (25 mL) was stirred at r.t. under nitrogen for 17 h. The reaction mixture was filtered under celite and the solvent removed under reduce pressure to give (S)-1-{5-[1-(methoxymethyl)-1H-indol-3-yl]oxazol-2-yl}-N,N-dimethyl-2-phenylethanamine (9, 0.388g, 90% yield). A mixture of N-methoxymethyl almazole C (9, 0.3 g, 0.8 mmol), 85% formic acid (40 mL), THF (25 mL), and H2O (5 mL) was heated at reflux temperature for 30 h. After cooling the solvents were removed under reduced pressure. The residue was purified by chromatography on a silica-amine gel column using Et2O-EtOAc (9:1) as eluent to give 1 (0.146 g, 55% yield); spectroscopic and optical properties {[α]D
20 +141 (c 0.1, MeOH)} were identical to natural almazole C.