Subscribe to RSS
DOI: 10.1055/s-2007-968012
Copper-Catalyzed Enantioselective Tandem Conjugate Addition/N-Nitroso Aldol Reaction
Publication History
Publication Date:
24 January 2007 (online)
Abstract
The first enantioselective tandem conjugate addition/N-nitroso aldol reaction catalyzed by copper and phosphoramidite is presented. The reactions proceeded smoothly furnishing the α-hydroxyamino carbonyl compounds in good yields with high enantioselectivity up to 95% ee.
Key words
tandem conjugate addition - N-nitroso aldol reaction - α-hydroxyamino carbonyl compounds - enantioselective - monophosphoramidite
-
1a
Ho T.-L. Tandem Organic Reactions New York; Wiley: 1992. -
1b
Tietze LF. Chem. Rev. 1996, 96: 115 -
1c
Nicolaou KC.Montagnon T.Snyder SA. Chem. Commun. 2003, 551 - 2
Guo H.-C.Ma J.-A. Angew. Chem. Int. Ed. 2005, 44: 2 -
3a
Feringa BL. Acc. Chem. Res. 2000, 33: 346 -
3b
Krause N.Hoffmann-Röder A. Synthesis 2001, 171 -
3c
Alexakis A.Benhaim C. Eur. J. Org. Chem. 2002, 3221 -
4a
Alexakis A. In Transition Metal Catalysed ReactionsMurahashi S.-I.Davies SG. IUPAC Blackwell Science; Oxford: 1999. p.303 -
4b
Ibuka T. Organocopper Reagents in Organic Synthesis Rose Press; Osaka: 2000. -
4c
Krause N. Modern Organocopper Chemistry Wiley-VCH; Weinheim: 2002. -
4d
Rathgeb X.March S.Alexakis A. J. Org. Chem. 2006, 71: 5737 -
4e
Li K.Alexakis A. Tetrahedron Lett. 2005, 46: 8019 -
4f
Li K.Alexakis A. Tetrahedron Lett. 2005, 46: 5823 - For Co-catalyzed 1,4-addition/aldol and Michael cyclization, see:
-
5a
Baik T.-G.Luiz A.-L.Wang L.-C.Krische MJ. J. Am. Chem. Soc. 2001, 123: 5112 -
5b
Wang L.-C.Jang H.-Y.Roh Y.Schultz AJ.Wang X.Lynch V.Krische MJ. J. Am. Chem. Soc. 2002, 124: 9448 - For Rh-catalyzed 1,4-addition/aldol cyclization, see:
-
6a
Jang H.-Y.Huddleston RR.Krische MJ. J. Am. Chem. Soc. 2002, 124: 15156 -
6b
Huddleston RR.Krische MJ. Org. Lett. 2003, 5: 1143 - For PR3-catalyzed 1,4-addition/Michael cyclization, see:
-
7a
Wang LC.Luiz A.-L.Agapiou K.Jang H.-Y.Krische MJ. J. Am. Chem. Soc. 2002, 124: 2402 -
7b
Agapiou K.Krische MJ. Org. Lett. 2003, 5: 1737 - 8 For catalytic 1,4-addition/cycloallylation, see:
Jellerichs BG.Kong J.-R.Krische MJ. J. Am. Chem. Soc. 2003, 125: 7758 - 9 For Rh-catalyzed 1,4-addition/aldol cyclization, see:
Cauble DF.Gipson JG.Krische MJ. J. Am. Chem. Soc. 2003, 125: 1110 -
10a
Feringa BL.Pineschi M.Arnold L.Imbos AR.de Vries AHM. Angew. Chem., Int. Ed. Engl. 1997, 36: 2620 ; Angew. Chem. 1997, 109, 2773 -
10b
Keller E.Maurer J.Naasz R.Schrader T.Meetsma A.Feringa BL. Tetrahedron: Asymmetry 1998, 9: 2409 -
10c
Arnold LA.Naasz R.Minnaard AJ.Feringa BL. J. Am. Chem. Soc. 2001, 123: 5841 -
10d
Mandoli A.Arnold LA.Salvadori P.Feringa BL. Tetrahedron: Asymmetry 2001, 12: 1929 -
10e
Arnold LA.Naasz RA.Minnaard J.Feringa BL. J. Org. Chem. 2002, 67: 7244 -
11a
Naasz R.Arnold LA.Pineschi M.Keller E.Feringa BL. J. Am. Chem. Soc. 1999, 121: 1104 -
11b
Pineschi M.Moro FD.Gini F.Minnaard AJ.Feringa BL. Chem. Commun. 2004, 1244 - 12
Dijk EW.Panella L.Pinho P.Naasz R.Meetsma A.Minnaard AJ.Feringa BL. Tetrahedron 2004, 60: 9687 -
13a
Alexakis A.Trevitt GP.Bernardinelli G. J. Am. Chem. Soc. 2001, 123: 4358 -
13b
Knopff O.Alexakis A. Org. Lett. 2002, 4: 3835 -
13c
Alexakis A.March S. J. Org. Chem. 2002, 67: 8753 -
14a
Degrado SJ.Mizutani H.Hoveyda AH. J. Am. Chem. Soc. 2001, 123: 755 -
14b
Mizutani H.Degrado SJ.Hoveyda AH. J. Am. Chem. Soc. 2002, 124: 779 - 15
Agapiou K.Cauble DF.Krische MJ. J. Am. Chem. Soc. 2004, 126: 4528 - For the enantioselective nitroso aldol reaction and related papers, see:
-
16a
Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2003, 125: 6038 -
16b
Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2004, 126: 6498 -
16c
Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2004, 126: 5360 -
16d
Momiyama N.Torii H.Saito S.Yamamoto H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5374 -
16e
Yamamoto Y.Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2004, 126: 5962 -
16f
Mathew SP.Iwamura HD.Blackmond G. Angew. Chem. Int. Ed. 2004, 43: 3317 -
16g
Córdova A.Sundén H.Bøgevig A.Johansson M.Himo F. Chem. Eur. J. 2004, 10: 3673 -
16h
Hayashi Y.Yamaguchi J.Sumiya T.Hibino K.Shoji M. J. Org. Chem. 2004, 69: 5966 -
16i
Hayashi Y.Yamaguchi J.Hibino K.Sumiya T.Urushima T.Shoji M.Hashizumi D.Koshino H. Adv. Synth. Catal. 2004, 346: 1435 -
16j
Wang W.Wang J.Li H.Liao L. Tetrahedron Lett. 2004, 45: 7235 -
16k
Iwamura H.Wells DH.Mathew SP.Klussmann M.Armstrong A.Blackmond DG. J. Am. Chem. Soc. 2004, 126: 16312 - 17
Yamamoto Y.Momiyama N.Yamamoto H. J. Am. Chem. Soc. 2004, 126: 5962 - 18
Bamberger E. Ber. Dtsch. Chem. Ges. 1894, 27: 1548
References and Notes
Copper-Catalyzed Enantioselective Tandem Conjugate Addition/
N
-Nitroso-Aldol Reaction: Typical Procedure: Under an Ar atmosphere, a solution of Cu(OTf)2 (3.6 mg, 0.010 mmol) and the monodentate phosphoramidite (0.020 mmol) in toluene (1 mL) was stirred at r.t. for 1 h. The colorless solution was cooled (-20 °C) and the ketone (0.50 mmol) and the diethylzinc solution (1.2 equiv) in hexane (1.0 M, 0.6 mL, 0.6 mmol) were added. After 3 h at -20 °C, PhNO (80.2 mg, 0.75 mmol, 1.5 equiv) in anhyd toluene (1.5 mL) was added. After stirring the mixture for 18 h, sat. aq NH4Cl (10 mL) was added to the reaction mixture, and then the reaction mixture was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with brine and dried over Na2SO4. The solvent was then removed under vacuum. After purification by flash chromatography on silica gel (PE-EtOAc, 200:1), the addition product 2a was obtained in 86.4% yield as a 2:1 diastereomeric mixture. IR (KBr): 3413, 2956, 2825, 2871, 1677, 1637, 1594, 1489, 1452, 1377, 1362, 1257, 1222 cm-1. MS: m/z = 345 [M+], 240 (47), 226 (80), 104 (53), 91 (44), 77 (100). 2a
¹
(minor isomer); yellow solid; mp 117.9-119.6 °C. 1H NMR (300 MHz, CDCl3): δ = 0.78 (t, J = 7.3 Hz, 3 H), 1.82 (m, J = 7.3 Hz, 1 H), 2.43 (m, J = 7.3 Hz, 1 H), 3.50 (m, J = 10.3 Hz, 1 H), 5.27 (d, J = 10.3 Hz, 1 H), 6.79 (t, J = 7.1 Hz, 1 H), 6.97-7.34 (m, 15 H). 13C NMR (75 MHz, CDCl3): δ = 11.7, 22.7, 48.2, 70.9, 114.9, 121.4, 126.9, 127.9, 128.1, 128.3, 128.4, 128.9, 129.1, 133.0, 137.2, 139.6, 151.3, 205.8. 2a
²
(major isomer): yellow oil. 1H NMR (300 MHz, CDCl3): δ = 0.72 (t, J = 7.2 Hz, 3 H), 1.62 (m, J = 7.2 Hz, 2 H), 3.61 (m, 1 H), 5.4 (d, J = 9.7 Hz, 1 H), 6.79 (t, J = 7.1 Hz, 1 H), 6.97-7.34 (m, 15 H). 13C NMR (75 MHz, CDCl3): δ = 12.3, 26.2, 47.4, 71.5, 115.5, 121.5, 126.7, 128.3, 128.4, 128.5, 128.6, 128.8, 133.8, 137.8, 141.5, 151.2, 203.7.
The enantiomeric excess of 2a was determined according to the following procedure: EtOH (20 mL) and HCl (2 M, 20 mL) were added to 2a at r.t. and the mixture was stirred for 2 d. The solvent was evaporated under vacuum and to the residue was added H2O (10 mL) and the resulting mixture was extracted with EtOAc (3 × 10 mL). The combined organic phase was washed with brine and dried over Na2SO4. The solvent was then removed under vacuum. Purification by flash chromatography on silica gel afforded 3a (PE-EtOAc, 200:1). IR (KBr): 3514, 3419, 2957, 2926, 2871, 1677, 1595, 1488, 1452, 1446, 1258, 1223, 1211, 750, 768, 696, 685 cm-1. MS: m/z = 363 [M+], 258 (100), 244 (39), 105 (23), 91 (30), 77 (40). 3a
¹
: yellow solid; mp 99.1-102.5 °C. 1H NMR (300 MHz, CDCl3): δ = 0.67 (t, J = 7.3 Hz, 3 H), 1.75 (m, 2 H), 2.99 (q, J = 4.8 Hz, 1 H), 4.75 (d, J = 9.2 Hz, 1 H), 5.03 (q, J = 4.6 Hz, 1 H), 6.36 (q, J = 6.7 Hz, 2 H), 6.98 (q, J = 6.7 Hz, 2 H), 7.20-7.26 (m, 5 H), 7.43-7.48 (m, 2 H), 7.54-7.57 (m, 1 H), 7.85-7.88 (q, J = 10.0 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 12.1, 22.5, 50.9, 64.5, 115.4, 122.9, 127.1, 128.4, 128.7, 128.9, 129.1, 133.6, 135.8, 146.6, 200.6.
3a
²
: yellow oil. 1H NMR (300 MHz, CDCl3): δ = 0.84 (t, J = 7.3 Hz, 3 H), 1.90 (m, 2 H), 3.09 (m, 1 H), 4.31 (d, J = 9.2 Hz, 1 H), 5.16 (q, J = 4.4 Hz, 1 H), 6.57 (q, J = 6.8 Hz, 2 H), 6.98 (m, 2 H), 7.04 (q, J = 6.8 Hz, 2 H), 7.22-7.26 (m, 3 H), 7.48-7.62 (m, 3 H), 7.92-7.95 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 12.5, 25.4, 50.8, 62.9, 115.4, 122.9, 127.2, 128.4, 128.4, 128.7, 129.0, 129.1, 133.6, 136.0, 138.8, 146.4, 199.9. Enantiomeric excess: 87%, 87%, determined by chiral HPLC analysis [Daicel Chiralcel AS; hexane-i-PrOH = 99:1, flow = 1.0 mL/min, t
R
(3a
¹
) = 12.49 min, 18.19 min; t
R
(3a
²
) = 13.95 min, 22.65 min].
Crystal data of 3c: C23H21ClFNO, MW = 381.86, orthorhombic, space group P2(1)2(1)2(1), a = 9.682(2), b = 19.389(3), c = 21.673(4) Å, α = 90°, β = 90°, γ = 90°, V = 4068.5(13) Å3, T = 296(2) K, Z = 8, D c = 1.247 mg/m3, µ = 0.208 mm-1, λ = 0.71073 Å, F(000) = 464, crystal size: 0.60 × 0.50 × 0.36 mm3, 9078 reflections collected, 7582 independent reflections [R(int) = 0.0203]; refinement method: full-matrix least-squares on F2; goodness-of-fit on F ² = 0.804, final R indices [I > 2σ(I)] R1 = 0.0419, wR2 = 0.0853 (CCDC no. 618359).