Semin Thromb Hemost 2007; 33(2): 136-143
DOI: 10.1055/s-2007-969026
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Platelet-Induced Differentiation of Endothelial Progenitor Cells

Harald F. Langer1 , Andreas E. May1 , Dietmar Vestweber2 , Hetty C. De Boer3 , Antonis K. Hatzopoulos4 , Meinrad Gawaz1
  • 1Medizinische Klinik III, Eberhard Karls Universität Tübingen, Tübingen, Germany
  • 2Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
  • 3Department of Nephrology, University Medical Center Leyden, Leyden, The Netherlands
  • 4GSF-Research Center for Environment & Health, Institute for Clinical Molecular Biology and Tumor Genetics, Munich, Germany, and Vanderbilt University Medical Center, Division of Cardiovascular Medicine, Nashville, Tennessee
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
06. März 2007 (online)

ABSTRACT

Endothelial progenitor cells (EPCs) have the potential to home at sites of vascular lesions and to contribute to revascularization. This homing is a highly concerted mechanism, which involves chemotaxis, adhesion, migration, and finally integration of the cells into the target tissue. Only recently has the platelet been identified as a central mediator of EPC homing. Adherent platelets were able to mediate chemotaxis and adhesion of EPCs, a process that involved P-selectin glycoprotein ligand 1 and very late antigen-4 (VLA-4). Recent studies suggest that platelet-derived stromal cell-derived factor-1 is also involved centrally in the recruitment of EPCs. Furthermore, platelets induce progenitor cell migration by platelet-derived growth factor AB. Recent in vivo data confirm the recruitment of EPCs to sites of vascular lesions after vessel denudation by activated platelets and fibrin. Moreover, when coincubated with platelets, EPCs differentiate to mature endothelial cells and have the potential to migrate and colonize a platelet thrombus. The described interaction of EPCs with platelets represents a novel mechanism of vascular remodeling and healing of endothelial lesions.

REFERENCES

  • 1 Ruggeri Z M. Platelets in atherothrombosis.  Nat Med. 2002;  8 1227-1234
  • 2 George J N. Platelets.  Lancet. 2000;  355 1531-1539
  • 3 Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.  Nat Med. 2003;  9 702-712
  • 4 Walter D H, Rittig K, Bahlmann F H et al.. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells.  Circulation. 2002;  105 3017-3024
  • 5 Rauscher F M, Goldschmidt-Clermont P J, Davis B H et al.. Aging, progenitor cell exhaustion, and atherosclerosis.  Circulation. 2003;  108 457-463
  • 6 Tepper O M, Galiano R D, Capla J M et al.. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures.  Circulation. 2002;  106 2781-2786
  • 7 Vasa M, Fichtlscherer S, Aicher A et al.. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.  Circ Res. 2001;  89 E1-E7
  • 8 Hill J M, Zalos G, Halcox J P et al.. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.  N Engl J Med. 2003;  348 593-600
  • 9 Strehlow K, Werner N, Berweiler J et al.. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation.  Circulation. 2003;  107 3059-3065
  • 10 Langer H, May A E, Daub K et al.. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro.  Circ Res. 2006;  98 e2-e10
  • 11 Janowska-Wieczorek A, Majka M, Kijowski J et al.. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment.  Blood. 2001;  98 3143-3149
  • 12 Liu B, Chen J S, Cao M et al.. Platelet characteristic antigens of CD34 + cells in cryopreserved cord blood: a study of platelet-derived microparticles in transplant processing.  Vox Sang. 2004;  87 96-104
  • 13 Massberg S, Konrad I, Schurzinger K et al.. Platelets secrete stromal cell-derived factor 1{alpha} and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo.  J Exp Med. 2006;  203 1221-1233
  • 14 de Boer H C, Verseyden C, Ulfman L H et al.. Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype.  Arterioscler Thromb Vasc Biol. 2006;  26 1653-1659
  • 15 Hatzopoulos A K, Folkman J, Vasile E, Eiselen G K, Rosenberg R D. Isolation and characterization of endothelial progenitor cells from mouse embryos.  Development. 1998;  125 1457-1468
  • 16 Vajkoczy P, Blum S, Lamparter M et al.. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis.  J Exp Med. 2003;  197 1755-1765
  • 17 Gawaz M, Neumann F J, Dickfeld T et al.. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells.  Circulation. 1998;  98 1164-1171
  • 18 Massberg S, Gawaz M, Gruner S et al.. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo.  J Exp Med. 2003;  197 41-49
  • 19 Langer H, May A E, Bultmann A, Gawaz M. ADAM 15 is an adhesion receptor for platelet GPIIb-IIIa and induces platelet activation.  Thromb Haemost. 2005;  94 555-561
  • 20 Schafer A, Schulz C, Eigenthaler M et al.. Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion.  Blood. 2004;  103 407-412
  • 21 Bosse R, Vestweber D. Only simultaneous blocking of the L- and P-selectin completely inhibits neutrophil migration into mouse peritoneum.  Eur J Immunol. 1994;  24 3019-3024
  • 22 Pendl G G, Robert C, Steinert M et al.. Immature mouse dendritic cells enter inflamed tissue, a process that requires E- and P-selectin, but not P-selectin glycoprotein ligand 1.  Blood. 2002;  99 946-956
  • 23 Fernandez-Aviles F, San Roman J A, Garcia-Frade J et al.. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction.  Circ Res. 2004;  95 742-748
  • 24 Wollert K C, Meyer G P, Lotz J et al.. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.  Lancet. 2004;  364 141-148
  • 25 Stamm C, Westphal B, Kleine H D et al.. Autologous bone-marrow stem-cell transplantation for myocardial regeneration.  Lancet. 2003;  361 45-46
  • 26 Ceradini D J, Kulkarni A R, Callaghan M J et al.. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.  Nat Med. 2004;  10 858-864
  • 27 Mazo I B, Gutierrez-Ramos J C, Frenette P S, Hynes R O, Wagner D D, von Andrian U H. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1.  J Exp Med. 1998;  188 465-474
  • 28 Frenette P S, Subbarao S, Mazo I B, von Andrian U H, Wagner D D. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow.  Proc Natl Acad Sci USA. 1998;  95 14423-14428
  • 29 Chavakis E, Aicher A, Heeschen C et al.. Role of {beta}2-integrins for homing and neovascularization capacity of endothelial progenitor cells.  J Exp Med. 2005;  201 63-72
  • 30 Ott I, Keller U, Knoedler M et al.. Endothelial-like cells expanded from CD34 + blood cells improve left ventricular function after experimental myocardial infarction.  FASEB J. 2005;  19 992-994

Harald LangerM.D. 

Medizinische Klinik III, Universitätsklinikum Tübingen

Otfried-Müllerstr. 10, 72076 Tübingen, Germany

eMail: harald.langer@med.uni-tuebingen.de