RSS-Feed abonnieren
DOI: 10.1055/s-2007-970743
Rh(II)-Catalyzed Intramolecular N-H Insertion of d-Glucose-Derived δ-Amino α-Diazo β-Ketoester: Synthesis of Pyrrolidine Iminosugars
Publikationsverlauf
Publikationsdatum:
21. Februar 2007 (online)
Abstract
The rhodium acetate catalyzed reaction of d-glucose-derived δ-amino α-diazo β-ketoester allows a stereoselective β-facial intramolecular N-H insertion reaction that leads to formation of the bicyclic pyrrolidinone ring skeleton in high yield. The sugar-substituted pyrrolidinone thus obtained was elaborated to allow the synthesis of promising glycosidase inhibitors, namely, 2,5-dideoxy-2,5-imino-l-glycero-α-d-galactoheptitol and 2,5-dideoxy-2,5-imino-d-galactitol.
Key words
alkaloids - azasugars - carbohydrates - pyrrolidines - rhodium carbenoid - N-H insertion
-
1a
O’Hagan D. Nat. Prod. Rep. 2000, 17: 435 ; and references therein -
1b
Daly JW.Spande TF.Garraffo HM. J. Nat. Prod. 2005, 68: 1556 -
2a
Whitesell JK. Chem. Rev. 1989, 89: 1581 -
2b
White JD.Xu Q.Lee C.-S.Valeriote FA. Org. Biomol. Chem. 2004, 2: 2092 -
3a
Fache F.Schulz E.Tommasino ML.Lernaire M. Chem. Rev. 2000, 100: 2159 -
3b
Hoang L.Bahmanyar S.Houk KN.List B. J. Am. Chem. Soc. 2003, 125: 16 -
3c
Chiral Reagents for Asymmetric Synthesis
Paquette LA. Wiley; Chichester: 2003. -
3d
Rogers CJ.Dickerson TJ.Brogan AP.Janda KD. J. Org. Chem. 2005, 70: 3705 -
4a
Pichon M.Figadere B. Tetrahedron: Asymmetry 1996, 7: 927 ; and references therein -
4b
Katritzky AR.Cui X.-L.Yang B.Steel PJ. J. Org. Chem. 1999, 64: 1979 -
4c
Besev M.Engman L. Org. Lett. 2002, 4: 3023 -
5a
Coldham I.Hufton R. Tetrahedron Lett. 1995, 36: 2157 -
5b
Pedrosa R.Andres C.Duque-Soldana JP.Mendiguchia P. Eur. J. Org. Chem. 2000, 3727 -
5c
Bustos F.Gorgojo JM.Suero R.Aurrecoechea JM. Tetrahedron 2002, 58: 6837 -
5d
Bajracharya GB.Huo Z.Yamamoto Y. J. Org. Chem. 2005, 70: 4883 -
5e
Bexrud JA.Beard JD.Leitch DC.Schafer LL. Org. Lett. 2005, 7: 1959 -
5f
Kim JY.Livinghouse T. Org. Lett. 2005, 7: 1737 -
5g
Karanjule NS.Markad SD.Shinde VS.Dhavale DD. J. Org. Chem. 2006, 71: 4667 - For rhodium carbenoid N-H insertion reaction, see:
-
6a
Salzmann TN.Ratcliffe RW.Christensen BG.Bouffard FA. J. Am. Chem. Soc. 1980, 102: 6161 -
6b
Moyer MP.Feldman PL.Rapoport H. J. Org. Chem. 1985, 50: 5223 -
6c
Ye T.McKervey MA. Chem. Rev. 1994, 94: 1091 -
6d
Garcia CF.McKervey MA.Ye T. Chem. Commun. 1996, 1465 -
6e
Padwa A.Weingarten MD. Chem. Rev. 1996, 96: 223 -
6f
Doyle MP.McKervey MA. Chem. Commun. 1997, 983 -
6g
Doyle MP.McKervey MA.Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds Wiley-Interscience; New York: 1998. -
6h
Wang J.Hou Y.Wu P. J. Chem. Soc., Perkin Trans. 1 1999, 2277 -
6i
Yang H.Jurkauskas V.Mackintosh N.Mogren T.Stephenson CRJ.Foster K.Brown W.Roberts E. Can. J. Chem. 2000, 78: 800 -
6j
Davies HML.Beckwith REJ. Chem. Rev. 2003, 103: 2861 -
6k
Davis FA.Fang T.Goswami R. Org. Lett. 2002, 4: 1599 -
6l
Lee S.-H.Clapham B.Koch G.Zimmermann J.Janda KD. J. Comb. Chem. 2003, 5: 188 - For rhodium carbenoid N-H insertion of phosphonate, see:
-
6m
Moody CJ.Swann E.Ferris L.Haigh D. Chem. Commun. 1997, 2391 -
6n
Moody CJ.Morfitt CN.Slawin AMZ. Tetrahedron: Asymmetry 2001, 12: 1657 -
6o
Nakamura Y.Ukita T. Org. Lett. 2002, 4: 2317 -
6p
Davis FA.Wu Y.Xu H.Zhang J. Org. Lett. 2004, 6: 4523 ; and references therein -
7a
Dhavale DD.Bhujbal NN.Joshi P.Desai SG. Carbohydr. Res. 1994, 263: 303 -
7b
Desai VN.Saha NN.Dhavale DD. J. Chem. Soc., Perkin Trans. 1 2000, 147 -
7c
Karche NP.Jachak SM.Dhavale DD. J. Org. Chem. 2001, 66: 6323 - 8
Karche NP.Jachak SM.Dhavale DD. J. Org. Chem. 2003, 68: 4531 - For pyrrolidine alkaloids, see:
-
9a
Chaudhari VD.Ajish Kumar KS.Dhavale DD. Tetrahedron Lett. 2004, 45: 8363 -
9b
Dhavale DD.Ajish Kumar KS.Chaudhari VD.Sharma T.Sabharwal SG.PrakashaReddy J. Org. Biomol. Chem. 2005, 3: 3720 -
9c
Dhavale DD.Matin MM.Sharma T.Sabharwal SG. Bioorg. Med. Chem. 2003, 11: 3295 ; and references therein - For piperidine and azepane alkaloids see:
-
9d
Dhavale DD.Markad SD.Karanjule NS.PrakashaReddy J. J. Org. Chem. 2004, 69: 4760 -
9e
Markad SD.Karanjule NS.Sharma T.Sabharwal SG.Dhavale DD. Bioorg. Med. Chem. 2006, 14: 5535 ; and references therein -
10a
Evans SV.Fellows LE.Shing TKM.Fleet GWJ. Phytochemistry 1985, 24: 1953 -
10b
Asano N.Kato A.Miyauchi M.Kizu H.Kameda Y.Watson AA.Nash RJ.Fleet GWJ. J. Nat. Prod. 1998, 61: 625 - 11
Legler G. In Iminosugars as Glycosidase InhibitorsStütz AE. Wiley-VCH; Weinheim, Germany: 1999. p.31 - 12
Watson AA.Nash RJ.Wormald MR.Harvey DJ.Dealler S.Lees E.Asano N.Kizu H.Kato A.Griffiths RC.Cairns AJ.Fleet GWJ. Phytochemistry 1997, 46: 255 - 13
Yamashita T.Yasuda K.Kizu H.Kameda Y.Watson AA.Nash RJ.Fleet GWJ.Asano N. J. Nat. Prod. 2002, 65: 1875 -
14a
Legler G. Adv. Carbohydr. Chem. Biochem. 1990, 48: 319 -
14b
Look GC.Fotsch CH.Wong CH. Acc. Chem. Res. 1993, 26: 182 -
15a
Izquierdo I.Plaza MT.Franco F. Tetrahedron: Asymmetry 2004, 15: 1465 -
15b
Izquierdo I.Plaza MT.Tamayo JA. Tetrahedron 2005, 61: 6527 -
16a
Gouverneur V.Ghosez L. Tetrahedron: Asymmetry 1990, 1: 363 -
16b
Gouverneur V.Ghosez L. Tetrahedron Lett. 1991, 32: 5349 -
16c
Masaki Y.Oda H.Kazuta K.Usai A.Itoh A.Xu F. Tetrahedron Lett. 1992, 33: 5089 -
16d
Shi M.Satoh Y.Makihara T.Masaki Y. Tetrahedron: Asymmetry 1995, 6: 2109 -
17a
Wang Y.-F.Takaoka Y.Wong C.-H. Angew. Chem., Int. Ed. Engl. 1994, 33: 1242 - 18
Chen H.Guo Z.Liu H.-W. J. Am. Chem. Soc. 1998, 120: 9951 -
23a
Fechter MH.Stutz AE. Carbohydr. Res. 1999, 319: 55 -
23b
Singh S.Han H. Tetrahedron Lett. 2004, 45: 6349 -
23c
Izquierdo I.Plaza MT.Rodríguez M.Tamayo JA.Martos A. Tetrahedron 2006, 62: 2693 -
23d
Chikkanna D.Han H. Synlett 2004, 2311
References and Notes
The synthesis of α-d-ribopentodialdose is known, however that of α-d-xylopentodialdose is unknown.
20The formation of 10 as a major product in 94% yield could be explained on the basis of the hydride delivery in LiAlH4, reducing from the convex face; the concave face attack of hydride afforded the corresponding C-5 epimeric compound in 6% yield as a minor product as evident from the 1H and 13C NMR spectral data.
21Perbenzylation at room temperature under a variety of reaction conditions for prolonged time afforded a mixture of mono-, di- and tribenzylated products.
22The NaBH4 (2.5 equiv) reduction of an anomeric mixture of hemiacetal was sluggish and led to only 50% conversion into the corresponding alcohol. Use of an excess amount of NaBH4 did not improve the yield of the product.
24All new compounds have been characterized by 1H NMR, 13C NMR, IR, and elemental analysis. Ethyl-3,6-dideoxy-3-benzyloxycarbonylamino-1,2-
O
-isopropylidene-α-
d
-xylohept-5-ulofuranuronate (
7): viscous liquid; R
f
0.65 (n-hexane-EtOAc, 5:1); [α]D +3.33 (c = 0.60, CHCl3). IR (neat): 3150-3400(br), 1730, 1650 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.26 (t, J = 7.4 Hz, 3 H), 1.30 (s, 3 H), 1.50 (s, 3 H), 3.40 (d, J = 16.0 Hz, 1 H), 3.75 (d, J = 16.0 Hz, 1 H), 4.18 (q, J = 7.4 Hz, 2 H), 4.50-4.62 (br m, 2 H), 4.89 (d, J = 3.3 Hz, 1 H), 5.08 (AB quartet, J = 12.0 Hz, 2 H), 5.86 (d, J = 3.6 Hz, 1 H), 5.89 (d, J = 3.3 Hz, 1 H), 7.20-7.40 (br s, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.0, 26.1, 26.7, 46.8, 58.0, 61.7, 66.9, 83.5, 84.3, 104.7, 112.5, 127.8, 127.9, 128.3, 128.4, 135.9, 155.5, 167.3, 199.4. The 1H and 13C NMR spectrum showed additional signals (<5%) corresponding to the enol form of the β-ketoester. Anal. Calcd for C20H25NO8 (407.41): C, 58.96; H, 6.18. Found: C, 58.82; H, 6.12.
Ethyl-3,6-dideoxy-6-diazo-3-benzyloxycarbonylamino-1,2-
O
-isopropylidene-α-
d
-xylohept-5-ulofuranuronate (
8): yield: 87%; viscous liquid; R
f
0.60 (n-hexane-EtOAc, 5:1); [α]D +44.00 (c = 0.5, CHCl3). IR (neat): 3150-3330, 2146, 1716, 1658 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.38 (t, J = 6.9 Hz, 3 H), 1.35 (s, 3 H), 1.59 (s, 3 H), 4.32 (q, J = 6.9 Hz, 2 H), 4.57 (d, J = 3.3 Hz, 1 H), 4.67 [(dd, J = 3.6, 8.7 Hz, 1 H); on D2O exchange became (d, J = 3.6 Hz)], 5.05 (s, 2 H), 5.22 (br d, J = 8.7 Hz, 1 H, exchanges with D2O), 5.69 (d, J = 3.6 Hz, 1 H), 5.97 (d, J = 3.3 Hz, 1 H), 7.20-7.40 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.6, 26.6, 27.1, 58.3, 62.4, 67.2, 80.0, 84.8, 104.6, 112.8, 128.1, 128.3, 128.7, 136.2, 155.6, 160.5, 186.1. In the 13C NMR the C5 carbon did not appear due to the presence of C=N2. This is analogous to the earlier observation reported by Davis.
[2]
Anal. Calcd for C20H23N3O8 (433.15): C, 55.42; H, 5.35. Found: C, 55.32; H, 5.32.
Preparation of Ethyl-3,6-dideoxy-3,6-benzyloxy-carbonylamino-1,2-
O
-isopropylidine-α-
d
-xylohept-5-ulofuranuronate (
9): To the solution of the diazo com-pound 8 (1.00 g, 2.30 mmol) in anhyd benzene (5 mL) was added Rh2(OAc)4 (0.03g, 0.04 mmol) under nitrogen atmosphere and the solution was refluxed for 20 min. On cooling, the reaction mixture was directly loaded on a silica gel column and eluted (n-hexane-EtOAc, 7:3) to give 9 as a viscous liquid (0.73 g, 78%); R
f
0.50 (n-hexane-EtOAc, 3:2); [α]D +10.00 (c = 0.8, CHCl3). IR (neat): 3150-3421 (br), 1750, 1660 cm-1. Anal. Calcd for C20H23NO8 (405):
C, 59.25; H, 5.72. Found: C, 59.27; H, 5.68. The 1H and 13C NMR spectra of this compound showed complex patterns due to keto-enol tautomerism and doubling of signals associated with the NCbz functionality.
3,6-Dideoxy-3,6-(
N
-benzylamino)-5,7-di-
O
-benzyl-1,2-
O
-isopropylidene-α-
d
-glycero-d-glucohepto-1,4-furanose (
10): yield: 68%; white solid; mp 96-97 °C; R
f
0.70 (n-hexane-EtOAc, 19:1); [α]D +48.57 (c = 0.7, CHCl3). IR (KBr): 1452, 1369, 1124, 1074, 698 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.23 (s, 3 H), 1.45 (s, 3 H), 3.21 (ddd, app q, J = 5.7, 6.3, 6.6 Hz, 1 H), 3.39 (d, J = 5.4 Hz, 1 H), 3.55 (dd, J = 6.3, 9.3 Hz, 1 H), 3.80 (dd, J = 5.7, 9.3 Hz, 1 H), 3.83 (d, J = 14.0 Hz, 1 H), 3.93 (dd, J = 4.8, 6.6 Hz, 1 H), 4.00 (d, J = 14.0 Hz, 1 H), 4.15 (d, J = 3.6 Hz, 1 H), 4.45 (AB q, J = 12.0 Hz, 2 H), 4.53 (d, J = 12.0 Hz, 1 H), 4.75 (d, J = 12.0 Hz, 1 H), 4.78 (dd, J = 4.8, 5.4 Hz, 1 H), 5.85 (d, J = 3.6 Hz, 1 H), 7.20-7.40 (m, 15 H). 13C NMR (75 MHz, CDCl3): δ = 26.6, 27.5, 57.7, 65.0, 70.8, 71.3, 72.7, 73.2, 78.0, 82.3, 84.8, 107.2, 112.0, 127.0, 127.3, 127.5, 127.7, 128.1, 129.2, 137.7, 138.0, 138.3. Anal. Calcd for C31H35NO5 (501.61): C, 74.23; H, 7.03. Found: C, 74.22; H, 7.00.
2,5-Dideoxy-2,5-imino-1,3-di-
O
-benzyl-l-glycero-α-
d
-galactoheptitol (
11): yield: 81%; viscous liquid; R
f
0.40 (n-hexane-EtOAc, 9:1); [α]D +3.07 (c = 0.65, CHCl3). IR (neat): 3100-3550, 1639, 1456, 1369 cm-1. 1H NMR (300 MHz, CDCl3 + D2O): δ = 3.02-3.12 (m, 2 H, H-3), 3.16 (ddd, J = 2.1, 4.2, 8.1 Hz, 1 H), 3.36 (dd, J = 2.7, 9.3 Hz, 1 H), 3.58 (d, J = 13.5 Hz, 1 H), 3.66 (dd, J = 4.5, 11.4 Hz, 1 H), 3.77 (dd, J = 4.5, 11.4 Hz, 1 H), 3.96 (ddd, app q, J = 4.5, 4.8, 9.6 Hz, 1 H), 4.01 (d, J = 13.5 Hz, 1 H), 4.05 (dd, J = 4.8, 8.1 Hz, 1 H), 4.22 (dd, J = 4.8, 5.1 Hz, 1 H), 4.44 (AB q, J = 12.0 Hz, 2 H), 4.45 (d, J = 11.7 Hz, 1 H), 4.68 (d, J = 11.7 Hz, 1 H), 7.20-7.40 (m, 15 H). 13C NMR (75 MHz, CDCl3 + D2O): δ = 60.3, 63.3, 64.8, 67.1, 68.4, 69.4, 69.9, 71.9, 73.5, 77.7, 127.2, 127.5, 127.6, 127.7, 128.3, 129.7, 137.0, 137.7, 138.5. Anal. Calcd for C28H33NO5 (463.57): C, 72.55; H, 7.18. Found: C, 72.49; H, 7.15.
2,5-Dideoxy-2,5-imino-l-glycero-α-
d
-galactoheptitol (
12): yield: 85%; viscous liquid; R
f
0.10 (MeOH);
[α]D -86.66 (c = 0.6, H2O). IR (nujol): 3200-3600(br) cm-1. 1H NMR (300 MHz, D2O): δ = 3.27 (dd, J = 5.7, 6.0 Hz, 1 H), 3.46 (ddd, app q, J = 5.8, 6.4, 6.6 Hz, 1 H), 3.63 (dd, J = 6.6, 12.0 Hz, 1 H), 3.72-3.78 (m, 2 H, H-7b), 3.83 (dd, J = 5.1, 11.4 Hz, 1 H), 3.97 (ddd, J = 3.3, 6.3, 9.9 Hz, 1 H), 4.29 (dd, J = 4.8, 5.7 Hz, 1 H), 4.35 (dd, J = 4.8, 6.6 Hz, 1 H). 13C NMR (75 MHz, D2O): δ = 62.1, 62.3, 62.4, 65.8, 71.9, 73.7, 73.7. Anal. Calcd for C7H15NO5 (193.2): C, 43.52; H, 7.83. Found: C, 43.50; H, 7.81.
2,5-Dideoxy-2,5-imino-
d
-galactitol (
14): yield: 83%; viscous liquid; R
f
0.10 (MeOH). IR (nujol): 3200-3600(br) cm-1. 1H NMR (300 MHz, D2O): δ = 3.75-3.83 (m, 2 H, H-2), 3.92 (dd, J = 8.4, 12.3 Hz, 2 H), 4.01 (dd, J = 5.1, 12.3 Hz, 2 H) 4.50 (dd, J = 1.5, 4.5 Hz, 2 H). 13C NMR (75 MHz, D2O): δ = 60.2, 63.8, 72.3. Anal. Calcd for C6H13NO4 (163): C, 44.16; H, 8.03. Found: C, 44.17; H, 8.05.
2,5-Dideoxy-2,5-imino-
d
-galactitol Hydrochloride (
15): yield: 89%; semi solid. IR (nujol): 3200-3600(br) cm-1. 1H NMR (300 MHz, D2O): δ = 3.73-3.81 (m, 2 H), 3.90 (dd, J = 8.1, 12.0 Hz, 2 H), 4.01 (dd, J = 4.8, 12.0 Hz, 2 H), 4.48 (d, J = 5.1 Hz, 2 H). 13C NMR (75 MHz, D2O): δ = 57.8, 61.4, 70.0. Anal. Calcd for C6H14NO4Cl (199.5): C, 36.10; H, 7.07. Found: C, 36.12; H, 7.07.