Abstract
The design of small but highly functional artificial catalysts is very important for practical organic synthesis. We have succeeded in the rational design of small and simple catalysts and related reactions based on acid-base combination chemistry. Acid-base combined catalysts can be classified into three types: (i) acid-base combined salt catalysts, (ii) conjugate acid-base catalysts, and (iii) nonconjugate acid-base catalysts. We have systematically developed acid-base combined salt catalysts such as ammonium salts, ate complexes, ion pairs and cation-π complexes, acid-base conjugate catalysts such as metal oxides (monoconjugation) and zinc(II)-3,3′-diphosphinol-BINOLates (triconjugation), and acid-base nonconjugate catalysts like l -histidine-derived sulfonamides.
1 Introduction
2 General Concept for the Design of Catalysts Based on Acid-Base Combination Chemistry
3 Catalytic Dehydrative Monoesterification of Phosphoric Acid with Alcohols Based on Acid-Base Combination Chemistry
4 Acid-Base Combined Salt Catalysts (Type A )
4.1 Brønsted Acid-Brønsted Base Combined Salt Catalysts (Type A-1 )
4.2 Lewis Acid-Lewis Base Combined Salt Catalysts and Reagents (Type A-2 )
4.3 Cation-Anion-Pair Catalysts (Type A-3 )
4.4 Cation-π Complex Catalysts (Type A-4 )
5 Lewis Acid-Lewis Base Conjugate Catalysts (Type B )
5.1 Molybdenum Oxides as Highly Effective Dehydrative Cyclization Catalysts Directed toward the Synthesis of Oxazolines and Thiazolines (Type B-1 )
5.2 Zinc(II)-3,3"-Diphosphinoyl-BINOLates in the Asymmetric Addition of Organozinc Reagents to Aldehydes (Type B-2 )
6 Brønsted Acid-Lewis Base Nonconjugate Asymmetric Catalysts (Separated Type) (Type C )
6.1 l -Histidine-derived Sulfonamide as a Minimal Artificial Acylase for the Kinetic Resolution of Racemic Alcohols
7 Conclusions
Key words
catalysis - salt - conjugate - acid-base combination chemistry - asymmetric synthesis
References and Notes
1
Artificial Enzymes
Breslow R.
Wiley-VCH;
Weinheim:
2005.
2 For examples of Lewis acid-Lewis base bifunctional asymmetric catalysis, see: Kanai M.
Kato N.
Ichikawa E.
Shibaski M.
Synlett
2005,
1491
3
Sakakura A.
Katsukawa M.
Ishihara K.
Org. Lett.
2005,
7:
1999
For reviews, see:
4a
Hayakawa Y. In
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Winterfeldt E.
Pergamon;
Oxford:
1991.
p.601-630
4b
Resse CB.
Org. Biomol. Chem.
2005,
3:
3851
5 2′,3′-O -Isopropylidiene ribonucleoside 5′-monophosphates were synthesized from the corresponding ribonucleosides and 5 equiv of phosphoric acid in the presence of 10 equiv of Bu3 N under reflux in DMF (153 °C) in moderate yield (38-58%). See: Honjo M.
Furukawa Y.
Kobayashi K.
Chem. Pharm. Bull.
1966,
14:
1061
6a
Ishihara K.
Nakagawa S.
Sakakura A.
J. Am. Chem. Soc.
2005,
127:
4168
6b
Sakakura A.
Nakagawa S.
Ishihara K.
Tetrahedron
2006,
62:
422
7
Otera J.
Esterification
Wiley-VCH;
Weinheim:
2003.
8
Wakasugi K.
Misaki T.
Yamada K.
Tanabe Y.
Tetrahedron Lett.
2000,
41:
5249
Hafnium(IV) and zirconium(IV) salts (0.10-1.0 mol%) are highly effective catalysts for the ester condensation reaction of carboxylic acids with equimolar amounts of alcohols. In their method azeotropic reflux conditions with the removal of water are required to form the corresponding ester in excellent yield. See:
9a
Ishihara K.
Ohara S.
Yamamoto H.
Science
2000,
390:
1140
9b
Ishihara K.
Nakayama M.
Ohara S.
Yamamoto H.
Synlett
2001,
1117
9c
Ishihara K.
Nakayama M.
Ohara S.
Yamamoto H.
Tetrahedron
2002,
58:
8179
9d
Nakayama M.
Sato A.
Ishihara K.
Yamamoto H.
Adv. Synth. Catal.
2004,
346:
1275
9e
Sato A.
Nakamura Y.
Maki T.
Ishihara K.
Yamamoto H.
Adv. Synth. Catal.
2005,
347:
1337
9f
Nakamura Y.
Maki T.
Ishihara K.
Yamamoto H.
Adv. Synth. Catal.
2006,
348:
1505
10 We have observed the similar unusual rate-accelerating effect in the dehydrative cyclization of 1,3,5-triketones to γ-pyrones catalyzed by bulky diarylammonium pentafluoro-benzenesulfonates. These results more strongly suggested a hydrophobic effect of catalysts. See: Sakakura, A.; Watanabe, H.; Nakagawa, S.; Ishihara, K.; to be submitted
11a
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2005,
127:
10504
11b
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2005,
127:
13079 ; additions and corrections
12a
Sakakura A.
Suzuki K.
Nakano K.
Ishihara K.
Org. Lett.
2006,
8:
2229
12b
Sakakura A.
Suzuki K.
Ishihara K.
Adv. Synth. Catal.
2006,
348:
2457
13a
Ahrendt K.
Borths CJ.
MacMillan DW.
J. Am. Chem. Soc.
2000,
122:
4243
13b
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
2458
14a
Corey EJ.
Loh T.-P.
J. Am. Chem. Soc.
1991,
113:
8966
14b
Ishihara K.
Gao Q.
Yamamoto H.
J. Org. Chem.
1993,
58:
6917
14c
Ishihara K.
Yamamoto H.
J. Am. Chem. Soc.
1994,
116:
1561
14d
Ishihara K.
Kurihara H.
Yamamoto H.
J. Am. Chem. Soc.
1996,
118:
3049
14e
Ishihara K.
Kurihara H.
Matsumoto M.
Yamamoto H.
J. Am. Chem. Soc.
1998,
120:
6920
15
Hatano M.
Matsumura T.
Ishihara K.
Org. Lett.
2005,
7:
573
16
Hatano M.
Suzuki S.
Ishihara K.
J. Am. Chem. Soc.
2006,
128:
9998
17a
Imamoto T.
Sugiura Y.
Takiyama N.
Tetrahedron Lett.
1984,
38:
4233
17b
Imamoto T.
Takiyama N.
Nakamura K.
Tetrahedron Lett.
1985,
39:
4763
17c
Imamoto T.
Takiyama N.
Nakamura K.
Hatajima T.
Kamiya Y.
J. Am. Chem. Soc.
1989,
111:
4392
18
Ishihara K.
Yano T.
Org. Lett.
2004,
6:
1983
For reviews, see:
19a
Hamlin KE.
Weston AW.
Org. React.
1957,
9:
1
19b
Paquette LA.
Gilday JP.
Org. Prep. Proced. Int.
1990,
22:
167
19c
Mehta G.
Venkateswaran RV.
Tetrahedron
2000,
56:
1399
20
Hatano M.
Ikeno T.
Miyamoto T.
Ishihara K.
J. Am. Chem. Soc.
2005,
127:
10776
21a
Holmes IP.
Kagan HB.
Tetrahedron Lett.
2000,
41:
7453
21b
Holmes IP.
Kagan HB.
Tetrahedron Lett.
2000,
41:
7457
22
Ishihara K.
Fushimi M.
Org. Lett.
2006,
8:
1921
23a
Otto S.
Boccaletti G.
Engberts JBFN.
J. Am. Chem. Soc.
1998,
120:
4328
23b
Otto S.
Engberts JBFN.
J. Am. Chem. Soc.
1999,
121:
6798
24a
van der Helm D.
Lawson MB.
Enwall EL.
Acta Crystallogr., Sect. B
1972,
28:
2307
24b
Muhonen H.
Hämäläinen R.
Finn. Chem. Lett.
1983,
120
25a
Yamada S.
Morita C.
J. Am. Chem. Soc.
2002,
124:
8184
25b
Yamada S.
Misono T.
Iwai Y.
Tetrahedron Lett.
2005,
46:
2239
26
Johnson JS.
Evans DA.
Acc. Chem. Res.
2000,
33:
325
27
Sakakura A.
Kondo R.
Ishihara K.
Org. Lett.
2005,
7:
1971
28
Velusamy S.
Ahamed M.
Punniyamurthy T.
Org. Lett.
2004,
6:
4821
29a
Hatano M.
Miyamoto T.
Ishihara K.
Adv. Synth. Catal.
2005,
347:
1561
29b
Hatano M.
Miyamoto T.
Ishihara K.
Synlett
2006,
1762
29c
Hatano M.
Miyamoto T.
Ishihara K.
J. Org. Chem.
2006,
71:
6474
30
Hatano M.
Miyamoto T.
Ishihara K.
Curr. Org. Chem.
2007,
11:
127
31a
Kitamura M.
Suga S.
Kawai K.
Noyori R.
J. Am. Chem. Soc.
1986,
108:
6071
31b
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
40
32a
Mori M.
Nakai T.
Tetrahedron Lett.
1997,
38:
6233
32b
Zhang F.-Y.
Yip C.-W.
Cao R.
Chan ASC.
Tetrahedron: Asymmetry
1997,
8:
585
32c
Balsells J.
Davis TJ.
Carroll P.
Walsh PJ.
J. Am. Chem. Soc.
2002,
124:
10336
33a
Huang W.-S.
Hu Q.-S.
Pu L.
J. Org. Chem.
1998,
63:
1364
33b
Simonson DL.
Kingsbury K.
Xu M.-H.
Hu Q.-S.
Sabat M.
Pu L.
Tetrahedron
2002,
58:
8189
33c
Qin Y.-C.
Pu L.
Angew. Chem. Int. Ed.
2006,
45:
273
34
Ishihara K.
Kosugi Y.
Akakura M.
J. Am. Chem. Soc.
2004,
126:
12212
35
Vedejs E.
Chen X.
J. Am. Chem. Soc.
1996,
118:
1809
36a
Ruble JC.
Latham HA.
Fu GC.
J. Am. Chem. Soc.
1997,
119:
1492
36b
Kawabata T.
Nagato M.
Takasu K.
Fuji K.
J. Am. Chem. Soc.
1997,
119:
3169
36c
Spivey AC.
Fekner T.
Spay SE.
J. Org. Chem.
2000,
65:
3154
36d
Naraku G.
Shimomoto N.
Hanamoto T.
Inanaga J.
Enantiomer
2000,
5:
135
36e
Priem G.
Pelotier B.
Macdonald SJF.
Anson MS.
Campbell IB.
J. Org. Chem.
2003,
68:
3844
37a
Miller SJ.
Copeland GT.
Papaioannou N.
Horstmann TE.
Ruel EM.
J. Am. Chem. Soc.
1998,
120:
1629
37b
Vasbinder MM.
Jarvo ER.
Miller SJ.
Angew. Chem. Int. Ed.
2001,
40:
2824