Abstract
The design of small but highly functional artificial catalysts is very important for
practical organic synthesis. We have succeeded in the rational design of small and
simple catalysts and related reactions based on acid-base combination chemistry. Acid-base
combined catalysts can be classified into three types: (i) acid-base combined salt
catalysts, (ii) conjugate acid-base catalysts, and (iii) nonconjugate acid-base catalysts.
We have systematically developed acid-base combined salt catalysts such as ammonium
salts, ate complexes, ion pairs and cation-π complexes, acid-base conjugate catalysts
such as metal oxides (monoconjugation) and zinc(II)-3,3′-diphosphinol-BINOLates (triconjugation),
and acid-base nonconjugate catalysts like l -histidine-derived sulfonamides.
1 Introduction
2 General Concept for the Design of Catalysts Based on Acid-Base Combination Chemistry
3 Catalytic Dehydrative Monoesterification of Phosphoric Acid with Alcohols Based
on Acid-Base Combination Chemistry
4 Acid-Base Combined Salt Catalysts (Type A )
4.1 Brønsted Acid-Brønsted Base Combined Salt Catalysts (Type A-1 )
4.2 Lewis Acid-Lewis Base Combined Salt Catalysts and Reagents (Type A-2 )
4.3 Cation-Anion-Pair Catalysts (Type A-3 )
4.4 Cation-π Complex Catalysts (Type A-4 )
5 Lewis Acid-Lewis Base Conjugate Catalysts (Type B )
5.1 Molybdenum Oxides as Highly Effective Dehydrative Cyclization Catalysts Directed
toward the Synthesis of Oxazolines and Thiazolines (Type B-1 )
5.2 Zinc(II)-3,3"-Diphosphinoyl-BINOLates in the Asymmetric Addition of Organozinc
Reagents to Aldehydes (Type B-2 )
6 Brønsted Acid-Lewis Base Nonconjugate Asymmetric Catalysts (Separated Type) (Type
C )
6.1 l -Histidine-derived Sulfonamide as a Minimal Artificial Acylase for the Kinetic Resolution
of Racemic Alcohols
7 Conclusions
Key words
catalysis - salt - conjugate - acid-base combination chemistry - asymmetric synthesis
References and Notes
<A NAME="RA44106ST-1">1 </A>
Artificial Enzymes
Breslow R.
Wiley-VCH;
Weinheim:
2005.
<A NAME="RA44106ST-2">2 </A> For examples of Lewis acid-Lewis base bifunctional asymmetric catalysis, see:
Kanai M.
Kato N.
Ichikawa E.
Shibaski M.
Synlett
2005,
1491
<A NAME="RA44106ST-3">3 </A>
Sakakura A.
Katsukawa M.
Ishihara K.
Org. Lett.
2005,
7:
1999
For reviews, see:
<A NAME="RA44106ST-4A">4a </A>
Hayakawa Y. In
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Winterfeldt E.
Pergamon;
Oxford:
1991.
p.601-630
<A NAME="RA44106ST-4B">4b </A>
Resse CB.
Org. Biomol. Chem.
2005,
3:
3851
<A NAME="RA44106ST-5">5 </A> 2′,3′-O -Isopropylidiene ribonucleoside 5′-monophosphates were synthesized from the corresponding
ribonucleosides and 5 equiv of phosphoric acid in the presence of 10 equiv of Bu3 N under reflux in DMF (153 °C) in moderate yield (38-58%). See:
Honjo M.
Furukawa Y.
Kobayashi K.
Chem. Pharm. Bull.
1966,
14:
1061
<A NAME="RA44106ST-6A">6a </A>
Ishihara K.
Nakagawa S.
Sakakura A.
J. Am. Chem. Soc.
2005,
127:
4168
<A NAME="RA44106ST-6B">6b </A>
Sakakura A.
Nakagawa S.
Ishihara K.
Tetrahedron
2006,
62:
422
<A NAME="RA44106ST-7">7 </A>
Otera J.
Esterification
Wiley-VCH;
Weinheim:
2003.
<A NAME="RA44106ST-8">8 </A>
Wakasugi K.
Misaki T.
Yamada K.
Tanabe Y.
Tetrahedron Lett.
2000,
41:
5249
Hafnium(IV) and zirconium(IV) salts (0.10-1.0 mol%) are highly effective catalysts
for the ester condensation reaction of carboxylic acids with equimolar amounts of
alcohols. In their method azeotropic reflux conditions with the removal of water are
required to form the corresponding ester in excellent yield. See:
<A NAME="RA44106ST-9A">9a </A>
Ishihara K.
Ohara S.
Yamamoto H.
Science
2000,
390:
1140
<A NAME="RA44106ST-9B">9b </A>
Ishihara K.
Nakayama M.
Ohara S.
Yamamoto H.
Synlett
2001,
1117
<A NAME="RA44106ST-9C">9c </A>
Ishihara K.
Nakayama M.
Ohara S.
Yamamoto H.
Tetrahedron
2002,
58:
8179
<A NAME="RA44106ST-9D">9d </A>
Nakayama M.
Sato A.
Ishihara K.
Yamamoto H.
Adv. Synth. Catal.
2004,
346:
1275
<A NAME="RA44106ST-9E">9e </A>
Sato A.
Nakamura Y.
Maki T.
Ishihara K.
Yamamoto H.
Adv. Synth. Catal.
2005,
347:
1337
<A NAME="RA44106ST-9F">9f </A>
Nakamura Y.
Maki T.
Ishihara K.
Yamamoto H.
Adv. Synth. Catal.
2006,
348:
1505
<A NAME="RA44106ST-10">10 </A>
We have observed the similar unusual rate-accelerating effect in the dehydrative cyclization
of 1,3,5-triketones to γ-pyrones catalyzed by bulky diarylammonium pentafluoro-benzenesulfonates.
These results more strongly suggested a hydrophobic effect of catalysts. See: Sakakura,
A.; Watanabe, H.; Nakagawa, S.; Ishihara, K.; to be submitted
<A NAME="RA44106ST-11A">11a </A>
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2005,
127:
10504
<A NAME="RA44106ST-11B">11b </A>
Ishihara K.
Nakano K.
J. Am. Chem. Soc.
2005,
127:
13079 ; additions and corrections
<A NAME="RA44106ST-12A">12a </A>
Sakakura A.
Suzuki K.
Nakano K.
Ishihara K.
Org. Lett.
2006,
8:
2229
<A NAME="RA44106ST-12B">12b </A>
Sakakura A.
Suzuki K.
Ishihara K.
Adv. Synth. Catal.
2006,
348:
2457
<A NAME="RA44106ST-13A">13a </A>
Ahrendt K.
Borths CJ.
MacMillan DW.
J. Am. Chem. Soc.
2000,
122:
4243
<A NAME="RA44106ST-13B">13b </A>
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
2458
<A NAME="RA44106ST-14A">14a </A>
Corey EJ.
Loh T.-P.
J. Am. Chem. Soc.
1991,
113:
8966
<A NAME="RA44106ST-14B">14b </A>
Ishihara K.
Gao Q.
Yamamoto H.
J. Org. Chem.
1993,
58:
6917
<A NAME="RA44106ST-14C">14c </A>
Ishihara K.
Yamamoto H.
J. Am. Chem. Soc.
1994,
116:
1561
<A NAME="RA44106ST-14D">14d </A>
Ishihara K.
Kurihara H.
Yamamoto H.
J. Am. Chem. Soc.
1996,
118:
3049
<A NAME="RA44106ST-14E">14e </A>
Ishihara K.
Kurihara H.
Matsumoto M.
Yamamoto H.
J. Am. Chem. Soc.
1998,
120:
6920
<A NAME="RA44106ST-15">15 </A>
Hatano M.
Matsumura T.
Ishihara K.
Org. Lett.
2005,
7:
573
<A NAME="RA44106ST-16">16 </A>
Hatano M.
Suzuki S.
Ishihara K.
J. Am. Chem. Soc.
2006,
128:
9998
<A NAME="RA44106ST-17A">17a </A>
Imamoto T.
Sugiura Y.
Takiyama N.
Tetrahedron Lett.
1984,
38:
4233
<A NAME="RA44106ST-17B">17b </A>
Imamoto T.
Takiyama N.
Nakamura K.
Tetrahedron Lett.
1985,
39:
4763
<A NAME="RA44106ST-17C">17c </A>
Imamoto T.
Takiyama N.
Nakamura K.
Hatajima T.
Kamiya Y.
J. Am. Chem. Soc.
1989,
111:
4392
<A NAME="RA44106ST-18">18 </A>
Ishihara K.
Yano T.
Org. Lett.
2004,
6:
1983
For reviews, see:
<A NAME="RA44106ST-19A">19a </A>
Hamlin KE.
Weston AW.
Org. React.
1957,
9:
1
<A NAME="RA44106ST-19B">19b </A>
Paquette LA.
Gilday JP.
Org. Prep. Proced. Int.
1990,
22:
167
<A NAME="RA44106ST-19C">19c </A>
Mehta G.
Venkateswaran RV.
Tetrahedron
2000,
56:
1399
<A NAME="RA44106ST-20">20 </A>
Hatano M.
Ikeno T.
Miyamoto T.
Ishihara K.
J. Am. Chem. Soc.
2005,
127:
10776
<A NAME="RA44106ST-21A">21a </A>
Holmes IP.
Kagan HB.
Tetrahedron Lett.
2000,
41:
7453
<A NAME="RA44106ST-21B">21b </A>
Holmes IP.
Kagan HB.
Tetrahedron Lett.
2000,
41:
7457
<A NAME="RA44106ST-22">22 </A>
Ishihara K.
Fushimi M.
Org. Lett.
2006,
8:
1921
<A NAME="RA44106ST-23A">23a </A>
Otto S.
Boccaletti G.
Engberts JBFN.
J. Am. Chem. Soc.
1998,
120:
4328
<A NAME="RA44106ST-23B">23b </A>
Otto S.
Engberts JBFN.
J. Am. Chem. Soc.
1999,
121:
6798
<A NAME="RA44106ST-24A">24a </A>
van der Helm D.
Lawson MB.
Enwall EL.
Acta Crystallogr., Sect. B
1972,
28:
2307
<A NAME="RA44106ST-24B">24b </A>
Muhonen H.
Hämäläinen R.
Finn. Chem. Lett.
1983,
120
<A NAME="RA44106ST-25A">25a </A>
Yamada S.
Morita C.
J. Am. Chem. Soc.
2002,
124:
8184
<A NAME="RA44106ST-25B">25b </A>
Yamada S.
Misono T.
Iwai Y.
Tetrahedron Lett.
2005,
46:
2239
<A NAME="RA44106ST-26">26 </A>
Johnson JS.
Evans DA.
Acc. Chem. Res.
2000,
33:
325
<A NAME="RA44106ST-27">27 </A>
Sakakura A.
Kondo R.
Ishihara K.
Org. Lett.
2005,
7:
1971
<A NAME="RA44106ST-28">28 </A>
Velusamy S.
Ahamed M.
Punniyamurthy T.
Org. Lett.
2004,
6:
4821
<A NAME="RA44106ST-29A">29a </A>
Hatano M.
Miyamoto T.
Ishihara K.
Adv. Synth. Catal.
2005,
347:
1561
<A NAME="RA44106ST-29B">29b </A>
Hatano M.
Miyamoto T.
Ishihara K.
Synlett
2006,
1762
<A NAME="RA44106ST-29C">29c </A>
Hatano M.
Miyamoto T.
Ishihara K.
J. Org. Chem.
2006,
71:
6474
<A NAME="RA44106ST-30">30 </A>
Hatano M.
Miyamoto T.
Ishihara K.
Curr. Org. Chem.
2007,
11:
127
<A NAME="RA44106ST-31A">31a </A>
Kitamura M.
Suga S.
Kawai K.
Noyori R.
J. Am. Chem. Soc.
1986,
108:
6071
<A NAME="RA44106ST-31B">31b </A>
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
40
<A NAME="RA44106ST-32A">32a </A>
Mori M.
Nakai T.
Tetrahedron Lett.
1997,
38:
6233
<A NAME="RA44106ST-32B">32b </A>
Zhang F.-Y.
Yip C.-W.
Cao R.
Chan ASC.
Tetrahedron: Asymmetry
1997,
8:
585
<A NAME="RA44106ST-32C">32c </A>
Balsells J.
Davis TJ.
Carroll P.
Walsh PJ.
J. Am. Chem. Soc.
2002,
124:
10336
<A NAME="RA44106ST-33A">33a </A>
Huang W.-S.
Hu Q.-S.
Pu L.
J. Org. Chem.
1998,
63:
1364
<A NAME="RA44106ST-33B">33b </A>
Simonson DL.
Kingsbury K.
Xu M.-H.
Hu Q.-S.
Sabat M.
Pu L.
Tetrahedron
2002,
58:
8189
<A NAME="RA44106ST-33C">33c </A>
Qin Y.-C.
Pu L.
Angew. Chem. Int. Ed.
2006,
45:
273
<A NAME="RA44106ST-34">34 </A>
Ishihara K.
Kosugi Y.
Akakura M.
J. Am. Chem. Soc.
2004,
126:
12212
<A NAME="RA44106ST-35">35 </A>
Vedejs E.
Chen X.
J. Am. Chem. Soc.
1996,
118:
1809
<A NAME="RA44106ST-36A">36a </A>
Ruble JC.
Latham HA.
Fu GC.
J. Am. Chem. Soc.
1997,
119:
1492
<A NAME="RA44106ST-36B">36b </A>
Kawabata T.
Nagato M.
Takasu K.
Fuji K.
J. Am. Chem. Soc.
1997,
119:
3169
<A NAME="RA44106ST-36C">36c </A>
Spivey AC.
Fekner T.
Spay SE.
J. Org. Chem.
2000,
65:
3154
<A NAME="RA44106ST-36D">36d </A>
Naraku G.
Shimomoto N.
Hanamoto T.
Inanaga J.
Enantiomer
2000,
5:
135
<A NAME="RA44106ST-36E">36e </A>
Priem G.
Pelotier B.
Macdonald SJF.
Anson MS.
Campbell IB.
J. Org. Chem.
2003,
68:
3844
<A NAME="RA44106ST-37A">37a </A>
Miller SJ.
Copeland GT.
Papaioannou N.
Horstmann TE.
Ruel EM.
J. Am. Chem. Soc.
1998,
120:
1629
<A NAME="RA44106ST-37B">37b </A>
Vasbinder MM.
Jarvo ER.
Miller SJ.
Angew. Chem. Int. Ed.
2001,
40:
2824