RSS-Feed abonnieren
DOI: 10.1055/s-2007-970783
Regioselective Microwave-Assisted Synthesis of Substituted Pyrazoles from Ethynyl Ketones
Publikationsverlauf
Publikationsdatum:
08. März 2007 (online)

Abstract
Reaction of α,β-ethynyl ketones and hydrazine derivatives gives 1,3- and 1,5-disubstituted pyrazoles in good yield. Microwave irradiation in concentrated hydrochloric acid-methanol (1.5% v/v), with concurrent cooling at sub-ambient temperatures or at 120 °C, for 30 or 2 minutes, respectively, facilitates rapid heterocyclization and preferentially gives the 1,3-disubstituted regioisomer.
Key words
ethynyl ketones - pyrazoles - heterocycles - microwave synthesis - concurrent heating and cooling
- 1 
             
            Bohlmann F.Rahtz D. Chem. Ber. 1957, 90: 2265
- 2 
             
            Bowden K.Jones ERH. J. Chem. Soc. 1946, 953
- 3 
             
            Miller RD.Reiser O. J. Heterocycl. Chem. 1993, 30: 755
- 4 
             
            Baldwin JE.Pritchard GJ.Rathmell RE. J. Chem. Soc., Perkin Trans. 1 2001, 2906
- 5 
             
            Adlington RM.Baldwin JE.Catterick D.Pritchard GJ.Tang LT. J. Chem. Soc., Perkin Trans. 1 2000, 2311
- 6 
             
            Adlington RM.Baldwin JE.Catterick D.Pritchard GJ. J. Chem. Soc., Perkin Trans. 1 1999, 855
- 7a 
             
            Bagley MC.Bashford KE.Hesketh CL.Moody CJ. J. Am. Chem. Soc. 2000, 122: 3301Reference Ris Wihthout Link
- 7b 
             
            Moody CJ.Bagley MC. Chem. Commun. 1998, 2049Reference Ris Wihthout Link
- 7c 
             
            Bagley MC.Dale JW.Merritt EA.Xiong X. Chem. Rev. 2005, 105: 685Reference Ris Wihthout Link
- 8 
             
            Davis JM.Truong A.Hamilton AD. Org. Lett. 2005, 7: 5405
- 9 
             
            Schroeder E.Lehmann M.Boettcher I. Eur. J. Med. Chem. 1979, 14: 309
- 10 
             
            Bagley MC.Dale JW.Ohnesorge M.Xiong X.Bower J. J. Comb. Chem. 2003, 5: 41Reference Ris Wihthout Link
- 11 
             
            Bashford KE.Burton MB.Cameron S.Cooper AL.Hogg RD.Kane PD.MacManus DA.Matrunola CA.Moody CJ.Robertson AAB.Warne MR. Tetrahedron Lett. 2003, 44: 1627Reference Ris Wihthout Link
- 12 
             
            Bagley MC.Hughes DD.Lubinu MC.Merritt EA.Taylor PH.Tomkinson NCO. QSAR Comb. Sci. 2004, 23: 859
- 13 
             
            Bagley MC.Dale JW.Bower J. Synlett 2001, 1149
- 14 
             
            Bagley MC.Dale JW.Hughes DD.Ohnesorge M.Phillips NG.Bower J. Synlett 2001, 1523
- 15 
             
            Bagley MC.Lunn R.Xiong X. Tetrahedron Lett. 2002, 43: 8331
- 16 
             
            Bagley MC.Chapaneri K.Xiong X. Tetrahedron Lett. 2004, 45: 6121
- 17 
             
            Bagley MC.Dale JW.Bower J. Chem. Commun. 2002, 1682
- 18 
             
            Bagley MC.Brace C.Dale JW.Ohnesorge M.Phillips NG.Xiong X.Bower J. J. Chem. Soc., Perkin Trans. 1 2002, 1663
- 19 
             
            Bagley MC.Xiong X. Org. Lett. 2004, 6: 3401Reference Ris Wihthout Link
- 20 
             
            Bagley MC.Glover C.Merritt EA.Xiong X. Synlett 2004, 811
- 21 
             
            Bagley MC.Glover C.Chevis D. Synlett 2005, 649
- 22 
             
            Bagley MC.Hughes DD.Taylor PH. Synlett 2003, 259
- 23 
             
            Bagley MC.Hughes DD.Lloyd R.Powers VEC. Tetrahedron Lett. 2001, 42: 6585
- 24 
             
            Hughes DD.Bagley MC. Synlett 2002, 1332
- 25 
             
            Engelmann A.Kirmse W. Chem. Ber. 1973, 106: 3092
- 26 
             
            Coispeau G.Elguero J. Bull. Soc. Chim. Fr. 1970, 2717
- 27 
             
            Strauss CR.Trainor RW. Aust. J. Chem. 1995, 48: 1665
- 28 
             
            Roberts BA.Strauss CR. Acc. Chem. Res. 2005, 38: 653
- 29a 
             
            Cablewski T.Faux AF.Strauss CR. J. Org. Chem. 1994, 59: 3408
- 29b 
             
            Kabza KG.Chapados BR.Gestwicki JE.McGrath JL. J. Org. Chem. 2000, 65: 1210
- 29c 
             
            Khadilkar BM.Madyar VR. Org. Process Res. Dev. 2001, 5: 452
- 29d 
             
            Esveld E.Chemat F.van Haveren J. Chem. Eng. Technol. 2000, 23: 279
- 29e 
             
            Esveld E.Chemat F.van Haveren J. Chem. Eng. Technol. 2000, 23: 429
- 29f 
             
            Shieh W.-C.Dell S.Repi O. Tetrahedron Lett. 2002, 43: 5607
- 29g 
             
            Baxendale IR.Pitts MR. Chim. Oggi 2006, 24: 41
- 30 
             
            Bagley MC.Jenkins RL.Lubinu MC.Mason C.Wood R. J. Org. Chem. 2005, 70: 7003Reference Ris Wihthout Link
- 35 
             
            Auwers K.Schmidt W. Ber. Dtsch. Chem. Ges. 1925, 58: 528
References and Notes
All pyrazoles exhibited satisfactory characterization data, including 1H NMR, 13C NMR, IR, MS and HRMS.
32Qualitative NOESY effects were seen for 1,3-disubstituted pyrazoles (Table [4] , entries 1, 6 and 8) between the aryl ortho-methine resonances and the pyrazole methine signals, the latter of which were well separated (see ref. 3) in chemical shift in the 1H NMR spectrum of both pyrazole regioisomers. The 5-ethyl-trisubstituted pyrazole (entry 4) showed NOESY effects between the aryl ortho-methine resonances and the methylene protons.
331,3-Diphenylpyrazole (3): mp 81-83 °C (lit.35 mp 84-85 °C); R f = 0.61 (CH2Cl2). HRMS: m/z [MH+] calcd for C15H13N2: 221.1073; found: 221.1074 [MH+]. IR (nujol): νmax = 1598, 1526, 1504, 1360, 1264, 1114, 1061, 1046, 954, 755, 686 cm-1. UV (CH2Cl2): λmax (ε) = 284 (17959), 224 (6189) nm. 1H NMR (400 MHz, CDCl3): δ = 7.89 (1 H, d, J = 2.5 Hz, 5-H), 7.85 (2 H, m, PhH), 7.71 (2 H, m, PhH), 7.38 (4 H, PhH), 7.24 (2 H, m, PhH), 6.71 (1 H, d, J = 2.5 Hz, 4-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 153.3 (C), 140.6 (C), 133.5 (C), 129.8 (CH), 129.1 (CH), 128.5 (CH), 128.4 (CH), 126.7 (CH), 126.2 (CH), 119.5 (CH), 105.4 (CH) ppm. MS (APCI): m/z (%) = 221 (100) [MH+], 194 (5), 118 (10).
341,5-Diphenylpyrazole (4): mp 52-55 °C (lit.35 mp 55-56 °C); R f = 0.18 (CH2Cl2). HRMS: m/z [MH+] calcd for C15H13N2: 221.1073; found: 221.1072 [MH+]. IR (nujol): νmax = 1596, 1541, 1502, 1450, 1385, 1224, 1158, 1130, 1068, 960, 761, 695 cm-1. UV (CH2Cl2): λmax (ε) = 252 (14493). 1H NMR (400 MHz, CDCl3): δ = 7.66 (1 H, d, J = 1.5 Hz, 3-H), 7.28-7.22 (8 H, PhH), 7.19-7.15 (2 H, m, PhH), 6.45 (1 H, d, J = 1.5 Hz, 4-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 143.0 (C), 140.3 (CH), 140.1 (C), 130.6 (CH), 128.9 (CH), 128.8 (CH), 128.5 (CH), 128.2 (CH), 127.4 (CH), 125.2 (CH), 107.9 (CH) ppm. MS (APCI): m/z (%) = 221 (100) [MH+], 194 (10), 152 (5), 103 (5).
 
    