References and Notes
1
Bohlmann F.
Rahtz D.
Chem. Ber.
1957,
90:
2265
2
Bowden K.
Jones ERH.
J. Chem. Soc.
1946,
953
3
Miller RD.
Reiser O.
J. Heterocycl. Chem.
1993,
30:
755
4
Baldwin JE.
Pritchard GJ.
Rathmell RE.
J. Chem. Soc., Perkin Trans. 1
2001,
2906
5
Adlington RM.
Baldwin JE.
Catterick D.
Pritchard GJ.
Tang LT.
J. Chem. Soc., Perkin Trans. 1
2000,
2311
6
Adlington RM.
Baldwin JE.
Catterick D.
Pritchard GJ.
J. Chem. Soc., Perkin Trans. 1
1999,
855
7a
Bagley MC.
Bashford KE.
Hesketh CL.
Moody CJ.
J. Am. Chem. Soc.
2000,
122:
3301
7b
Moody CJ.
Bagley MC.
Chem. Commun.
1998,
2049
7c
Bagley MC.
Dale JW.
Merritt EA.
Xiong X.
Chem. Rev.
2005,
105:
685
8
Davis JM.
Truong A.
Hamilton AD.
Org. Lett.
2005,
7:
5405
9
Schroeder E.
Lehmann M.
Boettcher I.
Eur. J. Med. Chem.
1979,
14:
309
10
Bagley MC.
Dale JW.
Ohnesorge M.
Xiong X.
Bower J.
J. Comb. Chem.
2003,
5:
41
11
Bashford KE.
Burton MB.
Cameron S.
Cooper AL.
Hogg RD.
Kane PD.
MacManus DA.
Matrunola CA.
Moody CJ.
Robertson AAB.
Warne MR.
Tetrahedron Lett.
2003,
44:
1627
12
Bagley MC.
Hughes DD.
Lubinu MC.
Merritt EA.
Taylor PH.
Tomkinson NCO.
QSAR Comb. Sci.
2004,
23:
859
13
Bagley MC.
Dale JW.
Bower J.
Synlett
2001,
1149
14
Bagley MC.
Dale JW.
Hughes DD.
Ohnesorge M.
Phillips NG.
Bower J.
Synlett
2001,
1523
15
Bagley MC.
Lunn R.
Xiong X.
Tetrahedron Lett.
2002,
43:
8331
16
Bagley MC.
Chapaneri K.
Xiong X.
Tetrahedron Lett.
2004,
45:
6121
17
Bagley MC.
Dale JW.
Bower J.
Chem. Commun.
2002,
1682
18
Bagley MC.
Brace C.
Dale JW.
Ohnesorge M.
Phillips NG.
Xiong X.
Bower J.
J. Chem. Soc., Perkin Trans. 1
2002,
1663
19
Bagley MC.
Xiong X.
Org. Lett.
2004,
6:
3401
20
Bagley MC.
Glover C.
Merritt EA.
Xiong X.
Synlett
2004,
811
21
Bagley MC.
Glover C.
Chevis D.
Synlett
2005,
649
22
Bagley MC.
Hughes DD.
Taylor PH.
Synlett
2003,
259
23
Bagley MC.
Hughes DD.
Lloyd R.
Powers VEC.
Tetrahedron Lett.
2001,
42:
6585
24
Hughes DD.
Bagley MC.
Synlett
2002,
1332
25
Engelmann A.
Kirmse W.
Chem. Ber.
1973,
106:
3092
26
Coispeau G.
Elguero J.
Bull. Soc. Chim. Fr.
1970,
2717
27
Strauss CR.
Trainor RW.
Aust. J. Chem.
1995,
48:
1665
28
Roberts BA.
Strauss CR.
Acc. Chem. Res.
2005,
38:
653
29a
Cablewski T.
Faux AF.
Strauss CR.
J. Org. Chem.
1994,
59:
3408
29b
Kabza KG.
Chapados BR.
Gestwicki JE.
McGrath JL.
J. Org. Chem.
2000,
65:
1210
29c
Khadilkar BM.
Madyar VR.
Org. Process Res. Dev.
2001,
5:
452
29d
Esveld E.
Chemat F.
van Haveren J.
Chem. Eng. Technol.
2000,
23:
279
29e
Esveld E.
Chemat F.
van Haveren J.
Chem. Eng. Technol.
2000,
23:
429
29f
Shieh W.-C.
Dell S.
Repi
O.
Tetrahedron Lett.
2002,
43:
5607
29g
Baxendale IR.
Pitts MR.
Chim. Oggi
2006,
24:
41
30
Bagley MC.
Jenkins RL.
Lubinu MC.
Mason C.
Wood R.
J. Org. Chem.
2005,
70:
7003
31 All pyrazoles exhibited satisfactory characterization data, including 1H NMR, 13C NMR, IR, MS and HRMS.
32 Qualitative NOESY effects were seen for 1,3-disubstituted pyrazoles (Table
[4]
, entries 1, 6 and 8) between the aryl ortho-methine resonances and the pyrazole methine signals, the latter of which were well separated (see ref. 3) in chemical shift in the 1H NMR spectrum of both pyrazole regioisomers. The 5-ethyl-trisubstituted pyrazole (entry 4) showed NOESY effects between the aryl ortho-methine resonances and the methylene protons.
33 1,3-Diphenylpyrazole (3): mp 81-83 °C (lit.35 mp 84-85 °C); R
f
= 0.61 (CH2Cl2). HRMS: m/z [MH+] calcd for C15H13N2: 221.1073; found: 221.1074 [MH+]. IR (nujol): νmax = 1598, 1526, 1504, 1360, 1264, 1114, 1061, 1046, 954, 755, 686 cm-1. UV (CH2Cl2): λmax (ε) = 284 (17959), 224 (6189) nm. 1H NMR (400 MHz, CDCl3): δ = 7.89 (1 H, d, J = 2.5 Hz, 5-H), 7.85 (2 H, m, PhH), 7.71 (2 H, m, PhH), 7.38 (4 H, PhH), 7.24 (2 H, m, PhH), 6.71 (1 H, d, J = 2.5 Hz, 4-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 153.3 (C), 140.6 (C), 133.5 (C), 129.8 (CH), 129.1 (CH), 128.5 (CH), 128.4 (CH), 126.7 (CH), 126.2 (CH), 119.5 (CH), 105.4 (CH) ppm. MS (APCI): m/z (%) = 221 (100) [MH+], 194 (5), 118 (10).
34 1,5-Diphenylpyrazole (4): mp 52-55 °C (lit.35 mp 55-56 °C); R
f
= 0.18 (CH2Cl2). HRMS: m/z [MH+] calcd for C15H13N2: 221.1073; found: 221.1072 [MH+]. IR (nujol): νmax = 1596, 1541, 1502, 1450, 1385, 1224, 1158, 1130, 1068, 960, 761, 695 cm-1. UV (CH2Cl2): λmax (ε) = 252 (14493). 1H NMR (400 MHz, CDCl3): δ = 7.66 (1 H, d, J = 1.5 Hz, 3-H), 7.28-7.22 (8 H, PhH), 7.19-7.15 (2 H, m, PhH), 6.45 (1 H, d, J = 1.5 Hz, 4-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 143.0 (C), 140.3 (CH), 140.1 (C), 130.6 (CH), 128.9 (CH), 128.8 (CH), 128.5 (CH), 128.2 (CH), 127.4 (CH), 125.2 (CH), 107.9 (CH) ppm. MS (APCI): m/z (%) = 221 (100) [MH+], 194 (10), 152 (5), 103 (5).
35
Auwers K.
Schmidt W.
Ber. Dtsch. Chem. Ges.
1925,
58:
528