References and Notes
1a
Amemiya M.
Ueno M.
Osono M.
Masuda T.
Kinoshita N.
Nishida C.
Hamada M.
Ishisuka M.
Takeuchi T.
J. Antibiot.
1994,
47:
536
1b
Amemiya M.
Someno T.
Sawa R.
Naganawa H.
Ishizuka M.
Takeuchi T.
J. Antibiot.
1994,
47:
541
2a
Yamazaki K.
Amemiya M.
Ishizuka M.
Takeuchi T.
J. Antibiot.
1995,
48:
1138
2b
Kawada M.
Amemiya M.
Ishizuka M.
Takeuchi T.
Jpn. J. Cancer Res.
1999,
90:
219
2c
Masuda T.
Watanabe S.
Amemiya M.
Ishizuka M.
Takeuchi T.
J. Antibiot.
1995,
48:
528
2d
Kawada M.
Kawatsu M.
Masuda T.
Ohba S.
Amemiya M.
Kohama T.
Ishizuka M.
Takeuchi T.
Int. Immunopharm.
2003,
3:
179
3
Kawada M.
Amemiya M.
Ishizuka M.
Takeuchi T.
Biochim. Biophys. Acta: Mol. Cell Res.
1999,
1452:
209
4
Bialy L.
Waldmann H.
Angew. Chem. Int. Ed.
2005,
44:
3814 ; and references therein
5a
Bialy L.
Waldmann H.
Angew. Chem. Int. Ed.
2002,
41:
1748
5b
Bialy L.
Waldmann H.
Chem. Eur. J.
2004,
10:
2759
6
Marshall JA.
Ellis K.
Tetrahedron Lett.
2004,
45:
1351
7
Lawhorn BG.
Boga SB.
Wolkenberg SE.
Colby DA.
Gauss C.-M.
Swingle MR.
Amable L.
Honkanen RE.
Boger DL.
J. Am. Chem. Soc.
2006,
128:
16720
8 For a review, see: Mengel A.
Reiser O.
Chem. Rev.
1999,
99:
1191
This compound was prepared in two steps from butane-1,4-diol by silylation (TBDPSCl, Et3N, CH2Cl2, r.t.) followed by oxidation (PDC, DMF, r.t.), see:
9a
Barrett AGM.
Flygare JA.
J. Org. Chem.
1991,
56:
638
9b
Zhou S.
Chen H.
Liao W.
Chen S.-H.
Li G.
Ando R.
Kuwajima I.
Tetrahedron Lett.
2005,
46:
6341
10a
Aiguade J.
Hao J.
Forsyth CJ.
Tetrahedron Lett.
2001,
42:
817
10b
Lafontaine JA.
Provencal DP.
Gardelli C.
Leahy JW.
J. Org. Chem.
2003,
68:
4215
11a
Roush WR.
Ando K.
Powers DB.
Palkowitz AD.
Halterman RL.
J. Am. Chem. Soc.
1990,
112:
6339
11b
Roush WR.
Parkowitz AD.
Ando K.
J. Am. Chem. Soc.
1990,
112:
6348
12a
Roush WR. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.1-54
12b
Yamamoto Y.
Asao N.
Chem. Rev.
1993,
93:
2207
13
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
14 The 1H NMR data of lactone 8, and in particular the coupling constants J
H3-H4, J
H4-H5 and J
H5-H6 as well as the chemical shifts of the methyl groups (H19 and H20) compare favorably well with those reported for structurally related syn,anti-diastereomeric lactones (Figure
[1]
).
[5]
,7
1H NMR (400 MHz, CD3OD): δ = 7.69-7.99 (m, 4 H), 7.43-7.37 (m, 6 H), 7.13 (dd, J = 9.6, 6.5 Hz, 1 H, H3), 5.92 (dd, J = 9.6, 0.7 Hz, 1 H, H2), 4.11 (dd, J = 10.5, 3.1 Hz, 1 H, H5), 3.86-3.74 (m, 2 H, 2 H8), 2.55 (m, 1 H, H4), 2.18 (m, 1 H, H7), 2.05 (m, 1 H, H6), 1.37 (m, 1 H, H7), 1.03 (s, 9 H), 0.98 (d, J = 7.1 Hz, 3 H, 3H19), 0.84 (d, J = 6.8 Hz, 3 H, 3 H20).
15a Acetal 9 was obtained as one major diastereomer (dr > 90:10) having a 1,4-trans-disubstitution pattern based on the coupling constant between H3 and H4 (3
J
H3-H4 = 6.0 Hz), see ref. 15b. However, the diastereomeric ratio varied with the reaction time due to thermodynamic equilibration of 9. Partial equilibration of the compounds bearing an acetalic C1 stereocenter was also noticed during purification on silica gel. This had no consequence since the C1 stereocenter was removed later in the synthesis.
15b
Valverde S.
Bernabe M.
Garcia-Ochoa S.
Gomez AM.
J. Org. Chem.
1990,
55:
2294
16
Garegg PJ.
Samuelsson B.
J. Chem. Soc., Perkin Trans. 1
1980,
2866
17
Cossy J.
Schmitt A.
Cinquin C.
Buisson D.
Belotti D.
Bioorg. Med. Chem. Lett.
1997,
7:
1699
18a
Seebach D.
Wasmuth D.
Helv. Chim. Acta
1980,
63:
197
18b
Frater G.
Müller U.
Günther W.
Tetrahedron
1984,
40:
1269
19 In model studies, the addition of n-BuLi to aldehyde 17 (Et2O, -78 °C to -30 °C) and subsequent desilylation (n-Bu4NF, THF) provided a 70:30 diastereomeric mixture of the secondary alcohols 23 and 24 (68%, Scheme 5). To ascertain that the major diastereomer 23 arose from a Felkin-Anh control, the directed reduction of the β-hydroxy-ketone 25 [Me4NBH(OAc)3, MeCN-AcOH, -40 °C to 0 °C] followed by desilylation (n-Bu4NF, THF) was carried out and led to a 85:15 mixture of the anti-1,3-diol 23 and the syn-1,3-diol 24, see: Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
20 Compound 20 and its epimer at C9 could be separated by flash chromatography on silica gel. However, the separation of the C9 epimers turned out to be easier for the alkynyl iodide 22.
21 Bis(9H-fluoren-9-ylmethyl)-{(1S,2S,3R)-3-hydroxy-5-iodo-2-methyl-1-[(3S)-3-((2S,3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)butyl]pent-4-ynyl} phosphate (22): mp 112 °C; [α]D +46.5 (c 0.4, CHCl3). IR: 3353, 2360, 1714, 1449, 1380, 1250, 1106, 1070, 987, 739 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.75-7.67 (m, 4 H), 7.54-7.41 (m, 4 H), 7.41-7.20 (m, 8 H), 6.95 (dd, J = 9.5, 6.5 Hz, 1 H), 5.93 (d, J = 9.5 Hz, 1 H), 4.69-4.61 (m, 1 H), 4.36-4.07 (m, 7 H), 3.86 (dd, J = 10.3, 2.4 Hz, 1 H), 2.40 (m, 1 H), 1.83-1.58 (m, 4 H), 1.51-1.41 (m, 1 H), 1.15-1.05 (m, 1 H), 0.98 (d, J = 7.0 Hz, 3 H), 0.89 (d, J = 6.9 Hz, 3 H), 0.78 (d, J = 6.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 164.4 (s), 151.6 (d), 143.1 (s, 2 C), 142.9 (s), 142.8 (s), 141.3 (s, 4 C), 127.9 (d), 127.8 (d), 127.7 (d, 2 C), 127.2 (d, 2 C), 127.1 (d, 2 C), 125.0 (d, 4 C), 120.0 (d) and 119.9 (d, 5 C), 94.8 (s), 83.5 (d), 78.4 [d, 2
J(13C-31P) = 5.8 Hz], 69.4 [t, 2
J(13C-31P) = 4.0 Hz], 69.3 [t, 2
J(13C-31P) = 4.3 Hz], 65.1 (d), 47.9 [d, 3
J(13C-31P) = 8.4 Hz], 47.8 [d, 3
J(13C-31P) = 8.7 Hz], 43.9 [d, 3
J(13C-31P) = 3.6 Hz], 33.8 (d), 30.6 [t, 3
J(13C-31P) = 4.1 Hz], 30.3 (d), 28.4 (t), 14.7 (q), 10.7 (q), 9.1 (q), 1.1 (s).