References and Notes
1a
Wittig G.
Davis P.
Koenig G.
Chem. Ber.
1951,
84:
627
1b
Seebach D.
Angew. Chem., Int. Ed. Engl.
1979,
18:
239
2a
Corey EJ.
Hegedus LS.
J. Am. Chem. Soc.
1969,
91:
4926
2b
Hegedus LS.
Perry RJ.
J. Org. Chem.
1985,
50:
4955
2c
Seyferth D.
Weinstein RM.
Wang W.-L.
J. Org. Chem.
1983,
48:
1144
2d
Seyferth D.
Hui RC.
J. Am. Chem. Soc.
1985,
107:
4551
2e
Söderberg BC.
York DC.
Harriston EA.
Caprara HJ.
Flurry AH.
Organometallics
1994,
13:
4501
2f
Söderberg BC.
York DC.
Organometallics
1994,
13:
4501
3a
Cooke MP.
Parlman RM.
J. Am. Chem. Soc.
1975,
97:
6863
3b
Cooke MP.
Parlman EA.
J. Am. Chem. Soc.
1977,
99:
5222
3c
DeShong P.
Silder DR.
Rybczynski PJ.
Slough GA.
Rheingold AL.
J. Am. Chem. Soc.
1988,
110:
2575
For the activation of acid chlorides, see:
4a
Hori K.
Ando M.
Takaishi N.
Inamoto Y.
Tetrahedron Lett.
1987,
28:
5883
4b
Andersson C.-M.
Hallberg A.
J. Org. Chem.
1988,
53:
4257
For the activation of acid anhydrides, see:
5a
Oguma K.
Miura M.
Satoh T.
Nomura M.
J. Organomet. Chem.
2002,
648:
297
5b
Hong Y.-T.
Barchuk A.
Krische MJ.
Angew. Chem. Int. Ed.
2006,
45:
6885
For the activation of aldehydes, see:
6a
Schwartz J.
Cannon JB.
J. Am. Chem. Soc.
1974,
96:
4721
6b
Marder TB.
Roe DC.
Millstein D.
Organometallics
1988,
7:
1451
6c
Willis MC.
McNally SJ.
Beswick PJ.
Angew. Chem. Int. Ed.
2004,
43:
340
6d
Willis MC.
Randell-Sly HE.
Woodward RL.
Currie GS.
Org. Lett.
2005,
7:
2249
6e
Jo E.-A.
Jun C.-H.
Eur. J. Org. Chem.
2006,
2504
6f
Beller M.
Seayad J.
Tillack A.
Jiao H.
Angew. Chem. Int. Ed.
2004,
43:
3368 ; and references cited therein
7a
Yamane M.
Kubota Y.
Narasaka K.
Bull. Chem. Soc. Jpn.
2005,
78:
331
7b
Hanzawa Y.
Tabuchi N.
Saito K.
Noguchi S.
Taguchi T.
Angew. Chem. Int. Ed.
1999,
38:
2395 ; and references cited therein
8
Tsuji J.
Palladium Reagents and Catalysts
Chap. 3.5:
John Wiley;
Chester:
2004.
p.265 ; and references cited therein
9 For the palladium-catalyzed intermolecular carbonylative Heck reaction, see: Satoh T.
Itaya T.
Okuro K.
Miura M.
Nomura M.
J. Org. Chem.
1995,
60:
7267 ; see also, ref 4
For the palladium-catalyzed intramolecular carbonylative Heck reaction, see:
10a
Hayashi T.
Tang J.
Kato K.
Org. Lett.
1999,
1:
1487
10b
Negishi E.
Ma S.
Amanfu J.
Copéret C.
Miller JA.
Tour JM.
J. Am. Chem. Soc.
1996,
118:
5919
There are few examples of intermolecular nucleophlic addition reactions of acyl late-transition-metal intermediates to olefins to give addition products, for reference, see:
11a
Sauthier M.
Castanet Y.
Mortreux A.
Chem. Commun.
2004,
1520
11b
Shirakawa E.
Yamamoto Y.
Nakao Y.
Tsuchimoto T.
Hiyama T.
Chem. Commun.
2001,
1926
11c
Biavati A.
Chiusoli GP.
Costa M.
Terenghi G.
Transition Met. Chem.
1979,
4:
398 ; see also ref. 7b
Recently, Larock et al. reported a palladium-catalyzed intramolecular carbonylation of o-iodostyrene derivatives, see:
12a
Gagnier SV.
Larock RC.
J. Am. Chem. Soc.
2003,
125:
4804
See also:
12b
Wu X.
Nilsson P.
Larhed M.
J. Org. Chem.
2005,
70:
346
For molybdenum(0)-catalyzed allylic substitution reactions via oxidative addition of allylic halide equivalents, see:
13a
Trost BM.
Lautens M.
J. Am. Chem. Soc.
1982,
104:
5543
13b
Trost BM.
Hachiya I.
J. Am. Chem. Soc.
1998,
120:
1104
13c
Belda O.
Moberg C.
Acc. Chem. Res.
2004,
37:
159
13d
Malkov AV.
Gouriou L.
Lloyd-Jones GC.
Stary I.
Langer V.
Spoor P.
Vinader V.
Kocovsky P.
Chem. Eur. J.
2006,
12:
6910 ; and references cited therein
Richmond et al. reported that the chelation-assisted oxidative addition of Ar-X to W(CO)3(EtCN)3 proceeded smoothly to give air-stable, seven-coordinate tungsten(II) complexes. However, this reaction was limited to specific aryl halides bearing a bidentate or tridentate chelating group and was not applied to synthetic reactions, see:
14a
Richmond TG.
King MA.
Keison EP.
Arif MA.
Organometallics
1987,
6:
1995
14b
Buffin BP.
Arif AM.
Richmond TG.
J. Chem. Soc., Chem. Commun.
1993,
1432
15 Larhed et al. reported the palladium-catalyzed carbonylation of aryl halides using Mo(CO)6 as a carbonyl source, see: Wu X.
Ekegren JK.
Larhed M.
Organometallics
2006,
25:
1434 ; and references cited therein, see also ref 12b
16 The use of other solvents such as THF, 1,4-dioxane, toluene and dibutyl ether at reflux temperature resulted in low conversion.
17 Typical Procedure: A mixture of aryl iodide 1m (51 mg, 0.20 mmol), Mo(CO)6 (53 mg, 0.20 mmol) and ethyl acrylate (2a, 0.22 mL, 2.0 mmol) was heated in DMF at 160 °C for 1 h under an Ar atmosphere. After complete consumption of the aryl iodide 1m was confirmed by TLC, the reaction was quenched at r.t. with phosphate buffer (pH 7). The product was extracted with Et2O (4 ×) and the combined organic extracts were washed with brine and dried over MgSO4. The solvent was removed under reduced pressure and the residue was purified by preparative TLC (silica gel, hexane-EtOAc, 5:1) to afford product 3m (40 mg, 78%).
Spectral Data for Selected Compounds
Ethyl 4-(naphthalen-1-yl)-4-oxobutanoate (3m)
1H NMR (300 MHz, CDCl3): δ = 1.28 (t, J = 7.1 Hz, 3 H), 2.83 (t, J = 6.6 Hz, 2 H), 3.37 (t, J = 6.6 Hz, 2 H), 4.19 (q, J = 7.1 Hz, 2 H), 7.45-7.65 (m, 3 H), 7.87 (d, J = 7.7 Hz, 1 H), 7.94 (d, J = 7.3 Hz, 1 H), 7.99 (d, J = 8.4 Hz, 1 H), 8.60 (d, J = 8.6 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 14.15, 28.65, 36.64, 60.65, 124.31, 125.73, 126.39, 127.48, 127.85, 128.31, 130.03, 132.61, 133.87, 135.61, 172.80, 202.25; IR (KBr): 2981, 1732, 1684 cm-1; Anal Calcd for C16H16O3: C, 74.98; H, 6.29. Found: C, 74.69; H, 6.39.
1-(Naphthalen-1-yl)-3-(4-methoxyphenyl)propan-1-one (5h) 1H NMR (300 MHz, CDCl3): δ = 3.09 (t, J = 7.7 Hz, 2 H), 3.36 (t, J = 7.7 Hz, 2 H), 3.79 (s, 3 H), 6.84 (d, J = 8.7 Hz, 2 H), 7.18 (d, J = 8.7 Hz, 2 H), 7.43-7.66 (m, 3 H), 7.81 (d, J = 7.3 Hz, 1 H), 7.87 (d, J = 7.8 Hz, 1 H), 7.98 (d, J = 8.3 Hz, 1 H), 8.54 (d, J = 8.5 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 29.74, 44.10, 55.25, 113.93, 124.33, 125.76, 126.41, 127.31, 127.82, 128.36, 129.36, 130.10, 132.48, 133.11, 133.93, 136.08, 158.00, 203.72; ΙR (KBr): 3048, 1681, 1247 cm-1; Anal Calcd for C20H18O2: C, 82.73; H, 6.25. Found: C, 82.49; H, 6.42.
2-Ethyl-1-indanone (11b)
1H NMR (300 MHz, CDCl3): δ = 1.01 (t, J = 7.5 Hz, 3 H), 1.49-1.60 (m, 1 H), 1.90-2.05 (m, 1 H), 2.55-2.66 (m, 1 H), 2.82 (dd, J = 3.8, 17.4 Hz, 1 H), 3.32 (dd, J = 7.9, 17.4 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 7.46 (d, J = 7.6 Hz, 1 H), 7.58 (t, J = 7.6 Hz, 1 H), 7.75 (d, J = 7.6 Hz, 1 H); 13C NMR (75 MHz, CDCl3): δ = 11.60, 24.46, 32.32, 48.75, 123.83, 126.53, 127.28, 134.60, 136.96, 153.82, 208.97; IR (KBr): 2961, 1709 cm-1; Anal Calcd for C11H12O: C, 82.46; H, 7.55. Found: C, 82.70; H, 7.54.
18
3m and 5g were obtained in lower yield in the absence of CO.
19 For an example of a related mechanism, see: Qian H.
Pei T.
Widenhoefer RA.
Organometallics
2005,
24:
287 ; see also ref 12a
20 No H-D exchange was observed when partially deuterated ketone 5g was heated in DMF at 160 °C.
21 We tried the reaction using D2O for the quenching but no deuterium incorporation in the product was observed. Thus, at present, we believe that the molybdenum enolate intermediate is protonated during the reaction by the small amount of water present in DMF.
22 Palladium-catalyzed intramolecular carbonylative cyclization was limited to terminal olefins in the case of indanone synthesis, see ref 12.