Subscribe to RSS
DOI: 10.1055/s-2007-973865
Gold-Catalyzed Direct Amination of Allylic Alcohols
Publication History
Publication Date:
26 March 2007 (online)

Abstract
An efficient and direct synthesis of allylic amines from allylic alcohols was developed by utilization of gold complexes as catalysts under mild reaction conditions. AuCl3 proved to be a better catalyst than a cationic gold(I) complex of AuCl(PPh3)/AgOTf.
Key words
gold catalysis - allylic alcohols - amination - nucleophilic substitution - synthetic methods
- For reviews, see:
-
1a
Tsuji J. Palladium Reagents and Catalysis John Wiley and Sons; Chichester: 2004. -
1b
Nakamura I.Yamamoto Y. Chem. Rev. 2004, 104: 2127 -
1c
Tsuji J. Transition Metal Reagents and Catalysts John Wiley and Sons; New York: 2000. -
1d
Transition Metals for Organic Synthesis
Beller M.Bolm C. Wiley-VCH; Weinheim: 1998. -
1e
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 - For reviews, see:
-
2a
Godleski SA. In Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I. Pergamon Press; New York: 1991. p.585 -
2b
Davis JA. In Comprehensive Organometallic Chemistry II Vol. 9:Abel EW.Stone FGA.Wilkinson G. Pergamon; Oxford: 1995. p.291 -
2c
Johannsen M.Jørgensen KA. Chem. Rev. 1998, 98: 1689 -
2d
Trost BM.VanVranken DL. Chem. Rev. 1996, 96: 395 - Selected papers:
-
3a
Tsuji M.Minami I. Acc. Chem. Res. 1987, 20: 140 -
3b
Trost BM. Angew. Chem., Int. Ed. Engl. 1989, 28: 1173 -
3c
Tsuji J. Synthesis 1990, 739 -
3d
Uozumi Y.Danjo H.Hayashi T. J. Org. Chem. 1999, 64: 3384 - Selected papers:
-
4a
Goux C.Massacret M.Lhoste P.Sinou D. Organometallics 1995, 14: 4585 -
4b
Deardorff DR.Savin KA.Justman CJ.Karanjawala ZE.Sheppeck JE.Hager DC.Aydin N. J. Org. Chem. 1996, 61: 3616 -
4c
Moreno-Mañas M.Morral L.Pleixats R. J. Org. Chem. 1998, 63: 6160 -
5a
Ziegler FE.Kneisley A.Wester RT. Tetrahedron Lett. 1986, 27: 1221 -
5b
Ziegler FE.Cain WT.Kneisley A.Stirchak EP.Wester RT. J. Am. Chem. Soc. 1988, 110: 5442 -
6a
Connell RD.Rein T.Åkermark B.Helquist P. J. Org. Chem. 1988, 53: 3845 -
6b
Sakamoto M.Shimizu I.Yamamoto A. Bull. Chem. Soc. Jpn. 1996, 69: 1065 - Selected papers:
-
7a
Tamura R.Kai Y.Kakihama M.Hayashi K.Tsuji M.Nakamura T.Oda D. J. Org. Chem. 1986, 51: 4375 -
7b
Tamura R.Kato M.Saegusa K.Kakihama M.Oda D. J. Org. Chem. 1987, 52: 4121 -
7c
Tamura R.Kamimura A.Ono N. Synthesis 1991, 423 - For review, see:
-
8a
Muzart J. Tetrahedron 2005, 61: 4179 - See also:
-
8b
Lumin S.Falck JR.Capdevila J.Karara A. Tetrahedron Lett. 1992, 33: 2091 -
8c
Tsay S.Lin LC.Furth PA.Shum CC.King DB.Yu SF.Chen B.Hwu JR. Synthesis 1993, 329 -
8d
Masuyama Y.Kagawa M.Kurusu Y. Chem. Lett. 1995, 1121 -
8e
Hirai Y.Shibuya K.Fukuda Y.Yokoyama H.Yamaguchi S. Chem. Lett. 1997, 221 -
9a
Itoh K.Hamaguchi N.Miura M.Nomura M. J. Chem. Soc., Perkin Trans. 1 1992, 2833 -
9b
Satoh T.Ikeda M.Miura M.Nomura M. J. Org. Chem. 1997, 62: 4877 -
9c
Yang S.-C.Hung C.-W. J. Org. Chem. 1999, 64: 5000 -
9d
Shue Y.-J.Yang S.-C.Lai H.-C. Tetrahedron Lett. 2003, 44: 1481 -
10a
Kimura M.Horino Y.Mukai R.Tanaka S.Tamaru Y. J. Am. Chem. Soc. 2001, 123: 10401 -
10b
Kimura M.Futamata M.Shibata K.Tamaru Y. Chem. Commun. 2003, 234 -
10c
Kimura M.Tomizawa T.Horino Y.Tanaka S.Tamaru Y. Tetrahedron Lett. 2000, 41: 3627 - 11
Stary I.Stará IG.Kocovsky P. Tetrahedron Lett. 1993, 34: 179 -
12a
Masuyama Y.Takahara JP.Kurusu Y. J. Am. Chem. Soc. 1988, 110: 4473 -
12b
See also reference 8d.
- 13
Lu X.Lu L.Sun J. J. Mol. Catal. 1987, 41: 245 - 14
Sakamoto M.Shimizu I.Yamamoto A. Bull. Chem. Soc. Jpn. 1996, 69: 1065 -
15a
Ozawa F.Okamoto H.Kawagishi S.Yamamoto S.Minami T.Yoshifuji M. J. Am. Chem. Soc. 2002, 124: 10968 -
15b
Ozawa F.Yoshifuji M. Dalton Trans. 2006, 4987 - 16
Yasuda M.Somyo T.Baba A. Angew. Chem. Int. Ed. 2006, 45: 793 - 17
Sanz R.Martínez A.Miguel D.Álvarez-Gutiérrez JM.Rodríguez F. Adv. Synth. Catal. 2006, 348: 1841 - 18 During this manuscript preparation, a bismuth-catalyzed allylic substitution was reported. In this reaction, the additives such as KPF6 were usually required:
Qin H.Yamagiwa N.Matsunaga S.Shibasaki M. Angew. Chem. Int. Ed. 2006, 46: 409 - For reviews on gold-catalyzed reactions, see:
-
19a
Dyker G. Angew. Chem. Int. Ed. 2000, 39: 4237 -
19b
Hashmi ASK. Gold Bull. 2003, 36: 3 -
19c
Hashmi ASK. Gold Bull. 2004, 37: 51 -
19d
Hoffmann-Röder A.Krause N. Org. Biomol. Chem. 2005, 3: 387 -
19e
Hashmi ASK. Angew. Chem. Int. Ed. 2005, 44: 6990 -
19f
Ma S.Yu S.Gu Z. Angew. Chem. Int. Ed. 2006, 45: 200 -
20a
Liu Y.Song F.Guo S. J. Am. Chem. Soc. 2006, 128: 11332 -
20b
Liu Y.Liu M.Guo S.Tu H.Zhou Y.Gao H. Org. Lett. 2006, 8: 3445 -
20c
Liu Y.Song F.Song Z.Liu M.Yan B. Org. Lett. 2005, 7: 5409 - 21
Liu Y.Song F.Cong L. J. Org. Chem. 2005, 70: 6999 - 22
Guo S.Zhang H.Song F.Liu Y. Tetrahedron 2007, 63: 2009 - For gold-catalyzed substitution of propargylic, and/or benzylic alcohols, see:
-
23a
Georgy M.Boucard V.Campagne J.-M. J. Am. Chem. Soc. 2005, 127: 14180 -
23b
Terrasson V.Marque S.Georgy M.Campagne J.-M. Adv. Synth. Catal. 2006, 348: 2063 - For gold-catalyzed addition of amines to olefins, allenes or alkynes, see:
-
24a
Zhang J.Yang C.He C. J. Am. Chem. Soc. 2006, 128: 1798 -
24b
Brouwer C.He C. Angew. Chem. Int. Ed. 2006, 45: 1744 -
24c
Han X.Widenhoefer RA. Angew. Chem. Int. Ed. 2006, 45: 1747 -
24d
Nishina N.Yamamoto Y. Angew. Chem. Int. Ed. 2006, 45: 3314 -
24e
Patil NT.Lutete LM.Nishina N.Yamamoto Y. Tetrahedron Lett. 2006, 47: 4749 -
24f
Zhang Z.Liu C.Kinder R.Han X.Qian H.Widenhoefer RA. J. Am. Chem. Soc. 2006, 128: 9066 -
24g
Morita N.Krause N. Org. Lett. 2004, 6: 4121 -
24h
Alfonsi M.Arcadi A.Aschi M.Bianchi G.Marinelli F. J. Org. Chem. 2005, 70: 2265 -
24i
Arcadi A.Bianchi G.Marinelli F. Synthesis 2004, 610 -
24j
Mizushima E.Hayashi T.Tanaka M. Org. Lett. 2003, 5: 3349 -
25a
Terrasson V.Marque S.Georgy M.Campagne J.Prima D. Adv. Synth. Catal. 2006, 348: 2063 -
25b
Liu J.Muth E.Flörke U.Henkel G.Merz K.Sauvageau J.Schwake E.Dyker G. Adv. Synth. Catal. 2006, 348: 456
References and Notes
Typical Procedure for AuCl
3
-Catalyzed Direct Amination of Allylic Alcohols
A solution of AuCl3 in MeCN (0.05 M) was prepared. Under N2 atmosphere, 1,3-diphenylprop-2-en-1-ol (1a, 0.11 g, 0.5 mmol) and p-ClC6H4NH2 (0.13 g, 1 mmol) were added to a 25 mL round-bottomed flask containing a stirring bar, and then 5 mL MeCN was added. To the mixture, 0.2 mL AuCl3 (0.01 mmol) was added. The resulting solution was stirred at 50 °C until the reaction was completed as monitored by thin-layer chromatography (3 h). The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (PE-EtOAc = 30:1) afforded product 2c in 92% isolated yield.
N-(E)-(4-Chlorophenyl)-(1,3-diphenylallyl)amine (2c): 1H NMR (CDCl3, TMS): δ = 4.12 (br s, 1 H), 5.02 (d, J = 5.7 Hz, 1 H), 6.35 (dd, J = 6.0, 15.9 Hz, 1 H), 6.50-6.61 (m, 3 H), 7.04-7.09 (m, 2 H), 7.19-7.41 (m, 10 H). 13C NMR (CDCl3, TMS): δ = 60.65, 114.64, 122.23, 126.48, 127.13, 127.67, 127.77, 128.56, 128.87, 128.93, 130.12, 131.25, 136.40, 141.53, 145.66. HRMS (EI): m/z calcd for C21H18ClN: 319.1128; found: 319.1121.