Abstract
An efficient and direct synthesis of allylic amines from allylic alcohols was developed
by utilization of gold complexes as catalysts under mild reaction conditions. AuCl3 proved to be a better catalyst than a cationic gold(I) complex of AuCl(PPh3 )/AgOTf.
Key words
gold catalysis - allylic alcohols - amination - nucleophilic substitution - synthetic
methods
References and Notes
For reviews, see:
<A NAME="RW25406ST-1A">1a </A>
Tsuji J.
Palladium Reagents and Catalysis
John Wiley and Sons;
Chichester:
2004.
<A NAME="RW25406ST-1B">1b </A>
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
<A NAME="RW25406ST-1C">1c </A>
Tsuji J.
Transition Metal Reagents and Catalysts
John Wiley and Sons;
New York:
2000.
<A NAME="RW25406ST-1D">1d </A>
Transition Metals for Organic Synthesis
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
<A NAME="RW25406ST-1E">1e </A>
Trost BM.
Crawley ML.
Chem. Rev.
2003,
103:
2921
For reviews, see:
<A NAME="RW25406ST-2A">2a </A>
Godleski SA. In Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
p.585
<A NAME="RW25406ST-2B">2b </A>
Davis JA. In Comprehensive Organometallic Chemistry II
Vol. 9:
Abel EW.
Stone FGA.
Wilkinson G.
Pergamon;
Oxford:
1995.
p.291
<A NAME="RW25406ST-2C">2c </A>
Johannsen M.
Jørgensen KA.
Chem. Rev.
1998,
98:
1689
<A NAME="RW25406ST-2D">2d </A>
Trost BM.
VanVranken DL.
Chem. Rev.
1996,
96:
395
Selected papers:
<A NAME="RW25406ST-3A">3a </A>
Tsuji M.
Minami I.
Acc. Chem. Res.
1987,
20:
140
<A NAME="RW25406ST-3B">3b </A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1989,
28:
1173
<A NAME="RW25406ST-3C">3c </A>
Tsuji J.
Synthesis
1990,
739
<A NAME="RW25406ST-3D">3d </A>
Uozumi Y.
Danjo H.
Hayashi T.
J. Org. Chem.
1999,
64:
3384
Selected papers:
<A NAME="RW25406ST-4A">4a </A>
Goux C.
Massacret M.
Lhoste P.
Sinou D.
Organometallics
1995,
14:
4585
<A NAME="RW25406ST-4B">4b </A>
Deardorff DR.
Savin KA.
Justman CJ.
Karanjawala ZE.
Sheppeck JE.
Hager DC.
Aydin N.
J. Org. Chem.
1996,
61:
3616
<A NAME="RW25406ST-4C">4c </A>
Moreno-Mañas M.
Morral L.
Pleixats R.
J. Org. Chem.
1998,
63:
6160
<A NAME="RW25406ST-5A">5a </A>
Ziegler FE.
Kneisley A.
Wester RT.
Tetrahedron Lett.
1986,
27:
1221
<A NAME="RW25406ST-5B">5b </A>
Ziegler FE.
Cain WT.
Kneisley A.
Stirchak EP.
Wester RT.
J. Am. Chem. Soc.
1988,
110:
5442
<A NAME="RW25406ST-6A">6a </A>
Connell RD.
Rein T.
Åkermark B.
Helquist P.
J. Org. Chem.
1988,
53:
3845
<A NAME="RW25406ST-6B">6b </A>
Sakamoto M.
Shimizu I.
Yamamoto A.
Bull. Chem. Soc. Jpn.
1996,
69:
1065
Selected papers:
<A NAME="RW25406ST-7A">7a </A>
Tamura R.
Kai Y.
Kakihama M.
Hayashi K.
Tsuji M.
Nakamura T.
Oda D.
J. Org. Chem.
1986,
51:
4375
<A NAME="RW25406ST-7B">7b </A>
Tamura R.
Kato M.
Saegusa K.
Kakihama M.
Oda D.
J. Org. Chem.
1987,
52:
4121
<A NAME="RW25406ST-7C">7c </A>
Tamura R.
Kamimura A.
Ono N.
Synthesis
1991,
423
For review, see:
<A NAME="RW25406ST-8A">8a </A>
Muzart J.
Tetrahedron
2005,
61:
4179
See also:
<A NAME="RW25406ST-8B">8b </A>
Lumin S.
Falck JR.
Capdevila J.
Karara A.
Tetrahedron Lett.
1992,
33:
2091
<A NAME="RW25406ST-8C">8c </A>
Tsay S.
Lin LC.
Furth PA.
Shum CC.
King DB.
Yu SF.
Chen B.
Hwu JR.
Synthesis
1993,
329
<A NAME="RW25406ST-8D">8d </A>
Masuyama Y.
Kagawa M.
Kurusu Y.
Chem. Lett.
1995,
1121
<A NAME="RW25406ST-8E">8e </A>
Hirai Y.
Shibuya K.
Fukuda Y.
Yokoyama H.
Yamaguchi S.
Chem. Lett.
1997,
221
<A NAME="RW25406ST-9A">9a </A>
Itoh K.
Hamaguchi N.
Miura M.
Nomura M.
J. Chem. Soc., Perkin Trans. 1
1992,
2833
<A NAME="RW25406ST-9B">9b </A>
Satoh T.
Ikeda M.
Miura M.
Nomura M.
J. Org. Chem.
1997,
62:
4877
<A NAME="RW25406ST-9C">9c </A>
Yang S.-C.
Hung C.-W.
J. Org. Chem.
1999,
64:
5000
<A NAME="RW25406ST-9D">9d </A>
Shue Y.-J.
Yang S.-C.
Lai H.-C.
Tetrahedron Lett.
2003,
44:
1481
<A NAME="RW25406ST-10A">10a </A>
Kimura M.
Horino Y.
Mukai R.
Tanaka S.
Tamaru Y.
J. Am. Chem. Soc.
2001,
123:
10401
<A NAME="RW25406ST-10B">10b </A>
Kimura M.
Futamata M.
Shibata K.
Tamaru Y.
Chem. Commun.
2003,
234
<A NAME="RW25406ST-10C">10c </A>
Kimura M.
Tomizawa T.
Horino Y.
Tanaka S.
Tamaru Y.
Tetrahedron Lett.
2000,
41:
3627
<A NAME="RW25406ST-11">11 </A>
Stary I.
Stará IG.
Kocovsky P.
Tetrahedron Lett.
1993,
34:
179
<A NAME="RW25406ST-12A">12a </A>
Masuyama Y.
Takahara JP.
Kurusu Y.
J. Am. Chem. Soc.
1988,
110:
4473
<A NAME="RW25406ST-12B">12b </A>
See also reference 8d.
<A NAME="RW25406ST-13">13 </A>
Lu X.
Lu L.
Sun J.
J. Mol. Catal.
1987,
41:
245
<A NAME="RW25406ST-14">14 </A>
Sakamoto M.
Shimizu I.
Yamamoto A.
Bull. Chem. Soc. Jpn.
1996,
69:
1065
<A NAME="RW25406ST-15A">15a </A>
Ozawa F.
Okamoto H.
Kawagishi S.
Yamamoto S.
Minami T.
Yoshifuji M.
J. Am. Chem. Soc.
2002,
124:
10968
<A NAME="RW25406ST-15B">15b </A>
Ozawa F.
Yoshifuji M.
Dalton Trans.
2006,
4987
<A NAME="RW25406ST-16">16 </A>
Yasuda M.
Somyo T.
Baba A.
Angew. Chem. Int. Ed.
2006,
45:
793
<A NAME="RW25406ST-17">17 </A>
Sanz R.
Martínez A.
Miguel D.
Álvarez-Gutiérrez JM.
Rodríguez F.
Adv. Synth. Catal.
2006,
348:
1841
<A NAME="RW25406ST-18">18 </A> During this manuscript preparation, a bismuth-catalyzed allylic substitution
was reported. In this reaction, the additives such as KPF6 were usually required:
Qin H.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Angew. Chem. Int. Ed.
2006,
46:
409
For reviews on gold-catalyzed reactions, see:
<A NAME="RW25406ST-19A">19a </A>
Dyker G.
Angew. Chem. Int. Ed.
2000,
39:
4237
<A NAME="RW25406ST-19B">19b </A>
Hashmi ASK.
Gold Bull.
2003,
36:
3
<A NAME="RW25406ST-19C">19c </A>
Hashmi ASK.
Gold Bull.
2004,
37:
51
<A NAME="RW25406ST-19D">19d </A>
Hoffmann-Röder A.
Krause N.
Org. Biomol. Chem.
2005,
3:
387
<A NAME="RW25406ST-19E">19e </A>
Hashmi ASK.
Angew. Chem. Int. Ed.
2005,
44:
6990
<A NAME="RW25406ST-19F">19f </A>
Ma S.
Yu S.
Gu Z.
Angew. Chem. Int. Ed.
2006,
45:
200
<A NAME="RW25406ST-20A">20a </A>
Liu Y.
Song F.
Guo S.
J. Am. Chem. Soc.
2006,
128:
11332
<A NAME="RW25406ST-20B">20b </A>
Liu Y.
Liu M.
Guo S.
Tu H.
Zhou Y.
Gao H.
Org. Lett.
2006,
8:
3445
<A NAME="RW25406ST-20C">20c </A>
Liu Y.
Song F.
Song Z.
Liu M.
Yan B.
Org. Lett.
2005,
7:
5409
<A NAME="RW25406ST-21">21 </A>
Liu Y.
Song F.
Cong L.
J. Org. Chem.
2005,
70:
6999
<A NAME="RW25406ST-22">22 </A>
Guo S.
Zhang H.
Song F.
Liu Y.
Tetrahedron
2007,
63:
2009
For gold-catalyzed substitution of propargylic, and/or benzylic alcohols, see:
<A NAME="RW25406ST-23A">23a </A>
Georgy M.
Boucard V.
Campagne J.-M.
J. Am. Chem. Soc.
2005,
127:
14180
<A NAME="RW25406ST-23B">23b </A>
Terrasson V.
Marque S.
Georgy M.
Campagne J.-M.
Adv. Synth. Catal.
2006,
348:
2063
For gold-catalyzed addition of amines to olefins, allenes or alkynes, see:
<A NAME="RW25406ST-24A">24a </A>
Zhang J.
Yang C.
He C.
J. Am. Chem. Soc.
2006,
128:
1798
<A NAME="RW25406ST-24B">24b </A>
Brouwer C.
He C.
Angew. Chem. Int. Ed.
2006,
45:
1744
<A NAME="RW25406ST-24C">24c </A>
Han X.
Widenhoefer RA.
Angew. Chem. Int. Ed.
2006,
45:
1747
<A NAME="RW25406ST-24D">24d </A>
Nishina N.
Yamamoto Y.
Angew. Chem. Int. Ed.
2006,
45:
3314
<A NAME="RW25406ST-24E">24e </A>
Patil NT.
Lutete LM.
Nishina N.
Yamamoto Y.
Tetrahedron Lett.
2006,
47:
4749
<A NAME="RW25406ST-24F">24f </A>
Zhang Z.
Liu C.
Kinder R.
Han X.
Qian H.
Widenhoefer RA.
J. Am. Chem. Soc.
2006,
128:
9066
<A NAME="RW25406ST-24G">24g </A>
Morita N.
Krause N.
Org. Lett.
2004,
6:
4121
<A NAME="RW25406ST-24H">24h </A>
Alfonsi M.
Arcadi A.
Aschi M.
Bianchi G.
Marinelli F.
J. Org. Chem.
2005,
70:
2265
<A NAME="RW25406ST-24I">24i </A>
Arcadi A.
Bianchi G.
Marinelli F.
Synthesis
2004,
610
<A NAME="RW25406ST-24J">24j </A>
Mizushima E.
Hayashi T.
Tanaka M.
Org. Lett.
2003,
5:
3349
<A NAME="RW25406ST-25A">25a </A>
Terrasson V.
Marque S.
Georgy M.
Campagne J.
Prima D.
Adv. Synth. Catal.
2006,
348:
2063
<A NAME="RW25406ST-25B">25b </A>
Liu J.
Muth E.
Flörke U.
Henkel G.
Merz K.
Sauvageau J.
Schwake E.
Dyker G.
Adv. Synth. Catal.
2006,
348:
456
<A NAME="RW25406ST-26">26 </A>
Typical Procedure for AuCl
3
-Catalyzed Direct Amination of Allylic Alcohols
A solution of AuCl3 in MeCN (0.05 M) was prepared. Under N2 atmosphere, 1,3-diphenylprop-2-en-1-ol (1a , 0.11 g, 0.5 mmol) and p -ClC6 H4 NH2 (0.13 g, 1 mmol) were added to a 25 mL round-bottomed flask containing a stirring
bar, and then 5 mL MeCN was added. To the mixture, 0.2 mL AuCl3 (0.01 mmol) was added. The resulting solution was stirred at 50 °C until the reaction
was completed as monitored by thin-layer chromatography (3 h). The solvent was removed
in vacuo and the residue was purified by flash chromatography on silica gel (PE-EtOAc
= 30:1) afforded product 2c in 92% isolated yield.
N -(E )-(4-Chlorophenyl)-(1,3-diphenylallyl)amine (2c ): 1 H NMR (CDCl3 , TMS): δ = 4.12 (br s, 1 H), 5.02 (d, J = 5.7 Hz, 1 H), 6.35 (dd, J = 6.0, 15.9 Hz, 1 H), 6.50-6.61 (m, 3 H), 7.04-7.09 (m, 2 H), 7.19-7.41 (m, 10 H).
13 C NMR (CDCl3 , TMS): δ = 60.65, 114.64, 122.23, 126.48, 127.13, 127.67, 127.77, 128.56, 128.87,
128.93, 130.12, 131.25, 136.40, 141.53, 145.66. HRMS (EI): m/z calcd for C21 H18 ClN: 319.1128; found: 319.1121.