References and Notes
1
Bray PG.
Ward SA.
O" Neill PM.
Curr. Top. Microbiol.
2005,
295:
3
2a
Zouhiri F.
Danet M.
Bérnard C.
Normand-Bayle M.
Mouscadet JF.
Leh H.
Thomas CM.
Mbemba G.
d’Angelo J.
Desmaële D.
Tetrahedron Lett.
2005,
46:
2201
2b
Normand-Bayle M.
Bérnard C.
Zouhiri F.
Mouscadet JF.
Leh H.
Thomas CM.
Mbemba G.
Desmaële D.
d’Angelo J.
Bioorg. Med. Chem. Lett.
2005,
15:
4019
3
Narender P.
Srinivas U.
Ravinder M.
Anada Rao B.
Ramesh C.
Harakishore K.
Gangadasu B.
Murthy USN.
Jayathirtha Rao V.
Bioorg. Med. Chem.
2006,
14:
4600
4
Rossiter S.
Péron JM.
Whitfield PJ.
Jones K.
Bioorg. Med. Chem. Lett.
2005,
15:
4806
5
Joshi AA.
Viswanathan CL.
Bioorg. Med. Chem. Lett.
2006,
16:
2613
6
Nayyar A.
Malde A.
Couthinho E.
Jain R.
Bioorg. Med. Chem.
2006,
14:
7302
7
Kiselyov AS.
Piatnitsky E.
Semenova M.
Semenov VV.
Bioorg. Med. Chem. Lett.
2006,
16:
602
8
Goodell JR.
Puig-Basagoiti F.
Forshey BM.
Shi PY.
Ferguson DM.
J. Med. Chem.
2006,
49:
2127
9
Cappelli A.
Pericot Mohr G.
Gallelli A.
Giuliani G.
Anzini M.
Vomero S.
Fresta M.
Porcu P.
Maciocco E.
Concas A.
Biggio G.
Donati A.
J. Med. Chem.
2003,
46:
3568
10a
Jiang J.
Hoang M.
Young JR.
Chaung D.
Eid R.
Turner C.
Lin P.
Tong X.
Wang J.
Tan C.
Feighner S.
Palyha O.
Hreniuk DL.
Pan J.
Sailer AW.
MacNeil DJ.
Howard A.
Shearman L.
Stribling S.
Camacho R.
Strack A.
Van der Ploeg LHT.
Goulet MT.
DeVita J.
Bioorg. Med. Chem. Lett.
2006,
16:
5270
10b
Tavares FX.
Al-Barazanji KA.
Bigham EC.
Bishop MJ.
Britt CS.
Carlton DL.
Fedman PL.
Goetz AS.
Grizzle MK.
Guo YC.
Handlon AL.
Hertzog DL.
Ignar DM.
Lang DG.
Ott RJ.
Peat J.
Zhou H.-Q.
J. Med. Chem.
2006,
49:
7905
11
Hu B.
Collini M.
Unwalla R.
Miller C.
Singhaus R.
Quinte E.
Savio D.
Halpern A.
Basso M.
Keith J.
Clerin V.
Chen L.
Resmini C.
Liu Q.-Y.
Feingold I.
Huselton C.
Azam F.
Farnegardh M.
Enroth C.
Bonn T.
Goos-Nilsson A.
Wilhemsson A.
Nambi P.
Wrobel J.
J. Med. Chem.
2006,
49:
6151
12a
Tumambac GE.
Rosencrance CM.
Wolf C.
Tetrahedron
2004,
60:
11293
12b
Tong H.
Wang L.
Jing X.
Wang F.
Macromolecules
2003,
36:
2584
Selected references:
13a
Li AH.
Ahmed E.
Chen X.
Cox M.
Crew AP.
Dong HQ.
Jin MZ.
Ma LF.
Panicker B.
Siu KW.
Steing AG.
Stolz KM.
Tavares PAR.
Volk B.
Weng QH.
Werner D.
Mulyihill M.
Org. Biomol. Chem.
2007,
5:
61
13b
Muscia GC.
Bollini JP.
Bruno AM.
Asís SE.
Tetrahedron Lett.
2006,
47:
8811
13c
Varala R.
Enugula R.
Adapa SR.
Synthesis
2006,
3825
13d
Anguille S.
Brunet JJ.
Chu NC.
Diallo O.
Pages C.
Vincendeau S.
Organometallics
2006,
25:
2943
13e
Ichikawa J.
Sakoda K.
Moriyama H.
Wada Y.
Synthesis
2006,
1590
13f
Savitha G.
Perumal PT.
Tetrahedron Lett.
2006,
47:
3589
13g
Kouznestov VV.
Bohorquez ARR.
Saavedra LA.
Medina RF.
Mol. Divers.
2006,
10:
29
13h
Janza B.
Studer A.
Org. Lett.
2006,
8:
1875
13i
Jia CS.
Wang GW.
Lett. Org. Chem.
2006,
3:
289
13j
Lin XF.
Cui SL.
Wang YG.
Tetrahedron Lett.
2006,
47:
3127
13k
Sivaprasad G.
Rajesh R.
Perumal PT.
Tetrahedron Lett.
2006,
47:
1783
13l
Duggineni S.
Sawant D.
Saha B.
Kundu B.
Tetrahedron
2006,
62:
3228
13m
Chaudhuri MK.
Hussain S.
J. Chem. Sci.
2006,
118:
199
14a
Zolfigol MA.
Salehi P.
Ghaderi A.
Shiri M.
Tanbakouchian Z.
J. Mol. Catal. A: Chem.
2006,
259:
253
14b
Li YS.
Wu CL.
Huang JL.
Su WK.
Synth. Commun.
2006,
36:
3065
14c
Selvam NP.
Saravan C.
Muralidharan D.
Perumal PTJ.
Heterocycl. Chem.
2006,
43:
1379
15a
Abbiati G.
Arcadi A.
Canevari V.
Capezzuto L.
Rossi E.
J. Org. Chem.
2005,
70:
6454
15b
Rossi E.
Abbiati G.
Canevari V.
Nava D.
Arcadi A.
Tetrahedron
2004,
60:
11391
15c
Arcadi A.
Marinelli F.
Rossi E.
Tetrahedron
1999,
55:
13233
16a
Abbiati G.
Arcadi A.
Marinelli F.
Rossi E.
Eur. J. Org. Chem.
2003,
1423
16b
Rossi E.
Abbiati A.
Arcadi A.
Marinelli F.
Tetrahedron Lett.
2001,
42:
3705
17
Abbiati G.
Arcadi A.
Marinelli F.
Rossi E.
Verdecchia M.
Synlett
2006,
3218
18
Arcadi A.
Chiarini M.
Di Giuseppe S.
Marinelli F.
Synlett
2003,
203
19a
Lund H. In
Organic Electrochemistry
4th ed.:
Lund H.
Hammerich O.
Marcel Dekker;
New York:
2001.
19b
Bard AJ.
Stratmann M.
Encyclopedia of Electrochemistry, Organic Electrochemistry
Vol. 8:
Schäfer HJ.
Wiley-VCH;
Weinheim:
2004.
19c
Torii S.
Electroorganic Reduction Synthesis
Vol. 1 and 2:
Wiley-VCH;
Koansha, Tokyo:
2006.
20
Caruso T.
Feroci M.
Inesi A.
Orsini M.
Scettri A.
Palombi L.
Adv. Synth. Catal.
2006,
348:
1942
21a
Suba C.
Murat E.
Niyazymbetov E.
Evans DH.
Electrochim. Acta
1997,
42:
2247
21b
Samet AV.
Niyazymbetov ME.
Semenov VV.
Laikhter AL.
Evans DH.
J. Org. Chem.
1996,
61:
8786
21c
Monte WT.
Baizer MM.
Little RD.
J. Org. Chem.
1983,
48:
803
22 β-(2-aminophenyl)-α,β-ynones 2a-d were prepared according to ref. 15c. General procedure for electrochemically promoted sequential alkylative cyclization reaction of nitroalkane 1a-c with β-(2-aminophenyl)-α,β-ynones 2: Pure nitroalkane, (2.0 mL) and TEATFB-DMF solution (0.1 M, 3.0 mL) were added to the cathodic and anodic compartment of the divided cell, respectively. The cell was equipped with a Pt mesh cathode (1.0 cm2) and a Pt spiral anode. The electrolysis was carried out under galvanostatic control (J = 30 mAcm-2, Q = 1.2 Fmol-1 referred to compound 2) at 0 °C. At the end of the electrolysis, the α,β-ynones 2 (0.2 mmol) were added to the cathode compartment and the reaction held at r.t. for the time reported in Table
[1]
. Once the TLC analysis showed the disappearance of 2, the excess of starting nitroalkane 1a-c was removed under vacuum and the residue purified by flash column chromatography to afford pure product 3a-j.
3b: pale yellow oil; 1H NMR (200 MHz, CDCl3): δ = 1.06 (t, J = 7.3 Hz, 3 H), 2.12-2.45 (m, 1 H), 2.34 (s, 6 H), 2.50-2.75 (m, 1 H), 6.22 (dd, J = 9.1, 5.6 Hz, 1 H), 7.05-7.15 (m, 2 H), 7.38 (d, J = 8.3 Hz, 1 H), 7.55-7.85 (m, 3 H), 8.06 (d, J = 8.1 Hz, 1 H), 8.21 (d, J = 7.9 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 10.9, 20.3, 21.2, 27.2, 87.3, 120.3, 121.8, 124.3, 125.4, 126.9, 127.6, 129.8, 130.0, 130.7, 131.8, 135.9, 138.9, 139.2, 148.4, 160.0; MS (EI): m/z (%) = 321 (13) [M + H]+, 275 (100).
3c: white solid; mp 84-86 °C; 1H NMR (200 MHz, CDCl3): δ = 1.04 (t, J = 7.3 Hz, 3 H), 2.10-2.35 (m, 1 H), 2.50-2.80 (m, 1 H), 3.79 (s, 3 H), 6.13-6.17 (m, 1 H), 6.96 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.54 (t, J = 7.1 Hz, 1 H), 7.67 (t, J = 7.2 Hz, 1 H), 7.89 (s, 1 H), 8.05 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.80-8.25 (m, 2 H); 13C NMR (50.3 MHz, CDCl3): δ = 10.9, 27.3, 55.4, 87.5, 114.4, 116.2, 121.8, 124.4, 125.0, 127.1, 129.0, 130.0, 130.6, 140.0, 148.6, 156.7, 161.3; MS (EI): m/z (%) = 322 (26) [M]+, 276 (100).
3d: pale brown solid; mp 110-112 °C; 1H NMR (200 MHz, CDCl3): δ = 1.05 (t, J = 7.3 Hz, 3 H), 2.12-2.32 (m, 1 H), 2.46-2.75 (m, 1 H), 3.81 (s, 3 H), 5.97 (dd, J = 8.8 Hz, 1 H), 6.93-7.05 (m, 2 H), 7.08-7.20 (m, 1 H), 7.32-7.47 (m, 2 H), 7.87 (dd, J = 7.6, 1.6 Hz, 1 H), 8.19 (s, 1 H); MS (EI): m/z (%) = 359 (25) [M + H]+, 312 (100).
3e: white solid; mp 127-129 °C; 1H NMR (200 MHz, CDCl3): δ = 2.32 (s, 3 H), 2.35 (s, 3 H), 5.90 (s, 2 H), 7.06 (s, 1 H), 7.09 (s, 1 H), 7.37 (d, J = 8.3 Hz, 1 H), 7.57 (s, 1 H), 7.60-7.75 (m, 1 H), 7.70-7.85 (m, 1 H), 7.96 (d, J = 8.3 Hz, 1 H), 8.15-8.35 (m, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 20.4, 21.2, 76.4, 122.4, 124.7, 125.1, 127.0, 128.0, 129.9, 130.2, 130.5, 131.9, 133.3, 136.1, 139.2, 159.4.
3f: white solid; mp 93-95 °C; 1H NMR (200 MHz, CDCl3): δ = 3.82 (s, 3 H), 5.90 (s, 2 H), 6.99 (d, J = 8.7 Hz, 2 H, part of AA′BB′), 7.50-7.65 (m, 1 H), 7.65-7.80 (m, 1 H), 7.83 (s, 1 H), 7.85-8.00 (m, 1 H), 8.08 (d, J = 8.7 Hz, 2 H, part of AA′BB′), 8.15-8.30 (m, 1 H).
3g: white solid; mp 53-55 °C; 1H NMR (200 MHz, CDCl3): δ = 2.09 (s, 6 H), 2.31 (s, 3 H), 2.35 (s, 3 H), 7.00-7.15 (m, 2 H), 7.30-7.75 (m, 5 H), 8.17 (d, J = 8.3 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 20.3, 21.2, 28.2, 89.4, 119.7, 122.7, 123.4, 126.9, 127.2, 129.4, 129.7, 131.2, 131.9, 136.0, 136.9, 138.9, 144.6, 148.7, 159.7; MS (EI): m/z (%) = 321 (6) [M + H]+, 274 (100).
3h: white solid; mp 107-109 °C; 1H NMR (200 MHz, CDCl3): δ = 2.12 (s, 6 H), 3.79 (s, 3 H), 6.96 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.30-7.45 (m, 1 H), 7.45-7.70 (m, 2 H), 7.79 (s, 1 H), 8.04 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 8.10-8.20 (m, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 28.1, 55.4, 89.6, 114.4, 115.9, 122.7, 123.5, 126.7, 128.9, 129.4, 131.1, 131.6, 145.1, 149.1, 156.4, 161.2; MS (EI): m/z (%) = 322 (5) [M]+, 276 (100).
3i: pale brown solid; mp 82-84 °C; 1H NMR (200 MHz, CDCl3): δ = 2.10 (s, 6 H), 3.83 (s, 3 H), 6.80-7.25 (m, 4 H), 7.30-7.50 (m, 1 H), 7.89 (dd, J = 7.6, 1.7 Hz, 1 H), 8.13 (s, 1 H); MS (EI): m/z (%) = 359 (10) [M + H]+, 312 (100).
3j: white solid; mp 196-198 °C; 1H NMR (200 MHz, CDCl3): δ = 2.20 (s, 6 H), 7.44-7.68 (m, 5 H), 7.66-7.86 (m, 3 H), 7.88-8.03 (m, 2 H), 8.05-8.15 (m, 1 H), 8.36 (d, J = 8.5 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 28.3, 89.5, 120.6, 122.8, 125.3, 125.4, 126.2, 127.0, 127.6, 128.1, 128.6, 129.7, 129.8, 130.3, 130.8, 131.3, 134.1, 137.2, 147.4, 158.9; MS (EI): m/z (%) = 341 (13) [M - H]+, 294 (100).
23
Nielsen AT. In
The Chemistry of the Nitro and Nitroso Groups
Feuer H.
Interscience;
New York:
1970.
Part 2.
p.372
24 General procedure for electrochemically promoted reaction of dicarbonyl compound 1e-f to β-(2-aminophenyl)-α,β-ynones 2: A solution of dicarbonyl compound 1 (0.20 mmol) in TEATFB-DMF (0.1 M, 2 mL) and a solution of TEATFB-DMF (0.1 M, 3.0 mL) were added to the cathodic and anodic compartment of the divided cell, respectively. The cell was equipped with a Pt mesh cathode (1.0 cm2) and a Pt spiral anode. The electrolysis was carried-out under galvanostatic control (J = 30 mAcm-2, Q = 1.2 Fmol-1 referred to 2) at 0 °C. At the end of electrolysis the α,β-ynones 2 (0.2 mmol) were added to the cathode compartment and the reaction held at r.t. for the time reported in Table
[1]
. The mixture was then poured into NH4Cl sat. soln (50 mL) and extracted with Et2O (× 2). The organic layer, dried over Na2SO4, was evaporated in vacuo and the crude purified by flash column chromatography using hexane-Et2O mixtures to afford pure product 3.
3l: white solid; mp 180-182 °C; 1H NMR (200 MHz, CDCl3): δ = 3.73 (s, 6 H), 3.80 (s, 3 H), 5.40 (s, 1 H), 6.97 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 7.40-7.60 (m, 1 H), 7.66 (t, J = 7.3 Hz, 1 H), 7.80-7.95 (m, 2 H), 8.07 (d, J = 8.8 Hz, 2 H, part of AA′BB′ system), 8.20 (d, J = 8.6 Hz, 1 H); 13C NMR (50.3 MHz, CDCl3): δ = 53.2, 53.4, 55.4, 114.3, 119.3, 122.4, 125.3, 126.7, 129.2, 129.8, 130.3, 131.2, 138.9, 148.4, 156.5, 161.2, 167.7; MS (EI): m/z (%) = 307 (100), 292 (35).
3m: white solid; mp 120-122 °C; 1H NMR (200 MHz, CDCl3): δ = 3.68 (s, 3 H), 3.74 (s, 3 H), 3.82 (s, 3 H), 5.20 (s, 1 H), 6.85-7.55 (m, 5 H), 7.87 (dd, J = 7.6, 1.5 Hz, 1 H), 8.10 (s, 1 H); MS (EI): m/z (%) = 251 (100), 208 (44).
3n: pale yellow oil; 1H NMR (200 MHz, CDCl3): δ = 1.00-1.35 (m, 3 H); 1.85-2.25 (m, 4 H), 2.35-2.55 (m, 2 H), 3.95-4.30 (m, 2 H), 7.20-8.05 (m, 11 H), 8.30 (d, J = 8.5 Hz, 1 H); MS (EI): m/z (%) = 409 (100) [M]+, 336 (26).
25
Shankar R.
Jha AK.
Singh US.
Hajela K.
Tetrahedron Lett.
2006,
47:
3077