Horm Metab Res 2007; 39(5): 384-388
DOI: 10.1055/s-2007-976534
Original Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Metabolic Stress with a High Carbohydrate Diet Increases Adiponectin Levels

Y. Kamari 1 , E. Grossman 1 , M. Oron-Herman 1 , E. Peleg 1 , Z. Shabtay 1 , A. Shamiss 1 , Y. Sharabi 1 , 2
  • 1Hypertension Unit, the Chaim Sheba Medical Center, Tel Hashomer, affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • 2Clinical Neurocardiology, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
Weitere Informationen

Publikationsverlauf

received 19. 9. 2006

accepted 27. 12. 2006

Publikationsdatum:
29. Mai 2007 (online)

Abstract

Background: Adiponectin is an adipose tissue-specific protein, which possesses anti-atherogenic and antidiabetic properties, yet its plasma levels are decreased in subjects with metabolic syndrome. Although high fat diet has been linked to hypoadiponectinemia, the effect of high-carbohydrate diet on adiponectin levels is not known. Therefore, we studied the effect of high-carbohydrate diet on adiponectin levels in the rat models of hypertension and insulin resistance.

Methods: Rats were randomly assigned to the high carbohydrate diet [Sprague-Dawley rats with fructose enriched diet (SDR-F) and spontaneously hypertensive rats with sucrose enriched diet (SHR-S model)] or chow diet (Control group). Rats were followed for 6 weeks (SDR-F model) and 8 weeks (SHR-S model). Body weight, systolic blood pressure, plasma levels of glucose, insulin, triglycerides and adiponectin, were recorded.

Results: Both models were associated with features of the metabolic syndrome, namely, high insulin levels, increased blood pressure and triglyceride levels. Plasma adiponectin levels did not change in the control groups. In contrast, adiponectin levels increased by 39 and 30% compared to baseline following four and six weeks of fructose enriched diet in SDR (from 3.3±0.2 to 4.5±0.4 and 4.3±0.2 μg/ml, respectively, p<0.05). Likewise, five and eight weeks of sucrose enriched diet in SHR, induced a 54 and 81% increase in adiponectin levels compared to baseline (from 4.2±0.3 to 6.3±0.3 and 7.3±0.5 μg/ml, respectively, p<0.01).

Conclusion: Metabolic stress with a high-carbohydrate diet increases plasma levels of adiponectin. Further studies will elucidate whether this is a transitory compensatory mechanism or a sign of target organ resistance to adiponectin.

References

  • 1 McLellan F. Obesity rising to alarming levels around the world.  Lancet. 2002;  359 1412
  • 2 Shimomura I, Funahashi T, Matsuzawa Y. [Significance of adipocytokine, fat-derived hormones, in metabolic syndrome].  Tanpakushitsu Kakusan Koso. 2002;  47 1896-1903
  • 3 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 425-432
  • 4 Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.  Science. 1993;  259 87-91
  • 5 Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, Uchida S, Ito Y, Takakuwa K, Matsui J, Takata M, Eto K, Terauchi Y, Komeda K, Tsunoda M, Murakami K, Ohnishi Y, Naitoh T, Yamamura K, Ueyama Y, Froguel P, Kimura S, Nagai R, Kadowaki T. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis.  J Biol Chem. 2003;  278 2461-2468
  • 6 Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF, Cheeseboro L, Ding YY, Russell RG, Lindemann D, Hartley A, Baker GR, Obici S, Deshaies Y, Ludgate M, Rossetti L, Scherer PE. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity.  Endocrinology. 2004;  145 367-383
  • 7 Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome.  Arterioscler Thromb Vasc Biol. 2004;  24 29-33
  • 8 Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, Maeda K, Nagaretani H, Kishida K, Maeda N, Nagasawa A, Funahashi T, Matsuzawa Y. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages.  Circulation. 2004;  109 2046-2049
  • 9 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity.  J Biol Chem. 1996;  271 10697-10703
  • 10 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 11 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 12 Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Hiraoka H, Nakamura T, Funahashi T, Matsuzawa Y. Association of hypoadiponectinemia with coronary artery disease in men.  Arterioscler Thromb Vasc Biol. 2003;  23 85-89
  • 13 Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, Kumada M, Ohashi K, Okamoto Y, Nishizawa H, Kishida K, Maeda N, Nagasawa A, Kobayashi H, Hiraoka H, Komai N, Kaibe M, Rakugi H, Ogihara T, Matsuzawa Y. Association of hypoadiponectinemia with impaired vasoreactivity.  Hypertension. 2003;  42 231-234
  • 14 Trujillo ME, Scherer PE. Adiponectin - journey from an adipocyte secretory protein to biomarker of the metabolic syndrome.  J Intern Med. 2005;  257 167-175
  • 15 Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation.  J Biol Chem. 2002;  277 25863-25866
  • 16 Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.  Nat Med. 2002;  8 731-737
  • 17 Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, Nagai R, Kadowaki T. Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine.  Curr Drug Targets Immune Endocr Metabol Disord. 2003;  3 243-254
  • 18 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2001;  7 941-946
  • 19 Zavaroni I, Chen YD, Reaven GM. Studies of the mechanism of fructose-induced hypertriglyceridemia in the rat.  Metabolism. 1982;  31 1077-1083
  • 20 Gross LS, Li L, Ford ES, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment.  Am J Clin Nutr. 2004;  79 774-779
  • 21 Pischon T, Girman CJ, Rifai N, Hotamisligil GS, Rimm EB. Association between dietary factors and plasma adiponectin concentrations in men.  Am J Clin Nutr. 2005;  81 780-786
  • 22 Polson DA, Thompson MP. Macronutrient composition of the diet differentially affects leptin and adiponutrin mRNA expression in response to meal feeding.  J Nutr Biochem. 2004;  15 242-246
  • 23 Qi L, Rimm E, Liu S, Rifai N, Hu FB. Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men.  Diabetes Care. 2005;  28 1022-1028
  • 24 Rossi AS, Lombardo YB, Lacorte JM, Chicco AG, Rouault C, Slama G, Rizkalla SW. Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats.  Am J Physiol Regul Integr Comp Physiol. 2005;  289 R486-R494
  • 25 Yannakoulia M, Yiannakouris N, Bluher S, Matalas AL, Klimis-Zacas D, Mantzoros CS. Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans.  J Clin Endocrinol Metab. 2003;  88 1730-1736
  • 26 Zhu M, Miura J, Lu LX, Bernier M, DeCabo R, Lane MA, Roth GS, Ingram DK. Circulating adiponectin levels increase in rats on caloric restriction: the potential for insulin sensitization.  Exp Gerontol. 2004;  39 1049-1059
  • 27 Elkayam A, Mirelman D, Peleg E, Wilchek M, Miron T, Rabinkov A, Oron-Herman M, Rosenthal T. The effects of allicin on weight in fructose-induced hyperinsulinemic, hyperlipidemic, hypertensive rats.  Am J Hypertens. 2003;  16 1053-1056
  • 28 Erlich Y, Rosenthal T. Effect of angiotensin-converting enzyme inhibitors on fructose induced hypertension and hyperinsulinaemia in rats.  Clin Exp Pharmacol Physiol Suppl. 1995;  22 S347-S349
  • 29 Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA. Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction.  Hypertension. 2005;  45 1012-1018
  • 30 El Zein M, Areas JL, Knapka J, MacCarthy P, Yousufi AK, DiPette D, Holland B, Goel R, Preuss HG. Excess sucrose and glucose ingestion acutely elevate blood pressure in spontaneously hypertensive rats.  Am J Hypertens. 1990;  3 380-386
  • 31 Uchida A, Nakata T, Hatta T, Kiyama M, Kawa T, Morimoto S, Miki S, Moriguchi J, Nakamura K, Fujita H, Itoh H, Sasaki S, Takeda K, Nakagawa M. Reduction of insulin resistance attenuates the development of hypertension in sucrose-fed SHR.  Life Sci. 1997;  61 455-464
  • 32 Sato T, Nara Y, Kato Y, Yamori Y. Long-term effects of high calorie sucrose-enriched diet and streptozotocin-induced diabetes on insulin resistance in spontaneously hypertensive rats.  Clin Exp Pharmacol Physiol. 1996;  23 669-674
  • 33 Pitre M, Nadeau A, Bachelard H. Insulin sensitivity and hemodynamic responses to insulin in Wistar-Kyoto and spontaneously hypertensive rats.  Am J Physiol. 1996;  271 E658-E668
  • 34 Kasim-Karakas SE, Tsodikov A, Singh U, Jialal I. Responses of inflammatory markers to a low-fat, high-carbohydrate diet: effects of energy intake.  Am J Clin Nutr. 2006;  83 774-779
  • 35 Koteish A, Diehl AM. Animal models of steatosis.  Semin Liver Dis. 2001;  21 89-104
  • 36 Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease.  Hepatology. 2005;  42 880-885
  • 37 Gaby AR. Adverse effects of dietary fructose.  Altern Med Rev. 2005;  10 294-306
  • 38 Garaulet M, Viguerie N, Porubsky S, Klimcakova E, Clement K, Langin D, Stich V. Adiponectin gene expression and plasma values in obese women during very-low-calorie diet. Relationship with cardiovascular risk factors and insulin resistance.  J Clin Endocrinol Metab. 2004;  89 756-760
  • 39 Liu YM, Lacorte JM, Viguerie N, Poitou C, Pelloux V, Guy-Grand B, Coussieu C, Langin D, Basdevant A, Clement K. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding.  J Clin Endocrinol Metab. 2003;  88 5881-5886
  • 40 Xydakis AM, Case CC, Jones PH, Hoogeveen RC, Liu MY, Smith EO, Nelson KW, Ballantyne CM. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction.  J Clin Endocrinol Metab. 2004;  89 2697-2703
  • 41 Heidemann C, Hoffmann K, Spranger J, Klipstein-Grobusch K, Mohlig M, Pfeiffer AF, Boeing H. A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC) - Potsdam Study cohort.  Diabetologia. 2005;  48 1126-1134
  • 42 Ran J, Hirano T, Fukui T, Saito K, Kageyama H, Okada K, Adachi M. Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: an implication for hypertension-related insulin resistance.  Metabolism. 2006;  55 478-488
  • 43 Xi L, Qian Z, Xu G, Zheng S, Sun S, Wen N, Sheng L, Shi Y, Zhang Y. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats.  J Nutr Biochem. 2007; 18(1): 64-72; 
  • 44 Li J, Yu X, Pan W, Unger RH. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity.  Am J Physiol Endocrinol Metab. 2002;  282 E1334-1341
  • 45 Bauche IB, Ait El Mkadem S, Rezsohazy R, Funahashi T, Maeda N, Miranda LM, Brichard SM. Adiponectin downregulates its own production and the expression of its AdipoR2 receptor in transgenic mice.  Biochem Biophys Rec Commun. 2006;  345 1414-1424
  • 46 Liu Y, Michael MD, Kash S, Bensch WR, Monia BP, Murray SF, Otto KA, Syed SK, Bhanot S, Sloop KW, Sullivan JM, Reifel-Miller A. Deficiency of AdipoR2 Reduces Diet-induced Insulin Resistance, Yet Promotes Type 2 Diabetes.  Endocrinology. 2007;  148 (2) 683-692

Correspondence

Dr. Y. Kamari

The Chaim Sheba Medical Center

Tel Hashomer

52621 Israel

Telefon: +972/3/530 26 24

Fax: +972/3/535 54 28

eMail: yehuda.kamari@sheba.health.gov.il