Subscribe to RSS
DOI: 10.1055/s-2007-977425
Nitration of Fullerene Derivatives under Mild Conditions
Publication History
Publication Date:
13 April 2007 (online)

Abstract
A new family of N-(2,4-dinitrophenyl)-2-pyrazolino[60]fullerene derivatives has been synthesized by electrophilic nitration using nitronium triflate. As evidenced by CV and OSWV experiments, these species show enhanced electron-accepting properties (up to 90 mV) with respect to C60.
Key words
fullerene - electrochemistry - electrophilic aromatic substitution
- 1
Haufler RE.Conceicao J.Chibante LPF.Chai Y.Byrne NE.Flanagan S.Haley MM.O’Brien SC.Pan C.Xiao Z.Billups WE.Ciufolini MA.Hauge RH.Margrave JL.Wilson LJ.Curl RF.Smalley RE. J. Phys. Chem. 1990, 94: 8634 - 2
Xie Q.Pérez-Cordero E.Echegoyen L. J. Am. Chem. Soc. 1992, 114: 3978 -
3a
Suzuki T.Li Q.Khemani KC.Wudl F.Almarsson . Science 1991, 254: 1186 -
3b
Echegoyen L.Echegoyen LE. Acc. Chem. Res. 1998, 31: 593 -
4a
Langa F.Gomez-Escalonilla MJ.Rueff J.Figueira Duarte TM.Nierengarten J.-F.Palermo V.Samorì P.Rio Y.Accorsi G.Armaroli N. Chem. Eur. J. 2005, 11: 4405 -
4b
Gouloumis A.Oswald F.Langa F.El-Khouly ME.Araki Y.Ito O. Eur. J. Org. Chem. 2006, 2344 -
4c
Delgado JL.El-Khouly ME.Araki Y.Gómez-Escalonilla MJ.de la Cruz P.Oswald F.Ito O.Langa F. Phys. Chem. Chem. Phys. 2006, 35: 4104 -
5a
Wang X.Perzon E.Delgado JL.de la Cruz P.Zhang F.Langa F.Andersson M.Inganäs O. Appl. Phys. Lett. 2004, 85: 5081 -
5b
Wang X.Perzon E.Oswald F.Langa F.Admassie S.Andersson M.Inganäs O. Adv. Funct. Mater. 2005, 15: 1665 -
5c
Gadisa A.Wang X.Admassie S.Perzon E.Oswald F.Langa F.Andersson MR.Inganas O. Org. Electronics 2006, 7: 195 - 6
Illescas BM.Martín N. C. R. Chimie 2006, 9: 1038 -
7a
Da Ros T.Prato M.Carano M.Ceroni P.Paolucci F.Roffia S. J. Am. Chem. Soc. 1998, 120: 11645 -
7b
Carano M.Da Ros T.Fanti M.Kordatos K.Marcaccio M.Paolucci F.Prato M.Roffia S.Zerbetto F. J. Am. Chem. Soc. 2003, 125: 7139 -
8a
Langa F.Oswald F. C. R. Chimie 2006, 9: 1058 -
8b
Keshavarz KM.Knight B.Haddon RC.Wudl F. Tetrahedron 1996, 52: 5149 -
9a
de la Cruz P.de la Hoz A.Langa F.Martín N.Pérez MC.Sánchez L. Eur. J. Org. Chem. 1999, 3433 -
9b
Deviprasad GR.Rahman MS.Souza FD. Chem. Commun. 1999, 849 -
10a
Nierengarten JF.Solladie N. J. Porphyrins Phtalocyanines 2005, 9: 760 -
10b
Nierengarten JF.Hahn U.Duarte TMF.Cardinali F.Solladie N.Walther ME.Van Dorsselaer A.Herschbach H.Leize E.Albrecht-Gary AM.Trabolsi A.Elhabiri M. C. R. Chimie 2006, 9: 1022 -
10c
Rio Y.Enderlin G.Bourgogne C.Nierengarten J.-F.Gisselbrecht J.-P.Gross M.Accorsi G.Armaroli N. Inorg. Chem. 2003, 42: 8783 - 11
Delgado JL.de la Cruz P.López-Arza V.Langa F.Kimball DB.Haley MM.Araki Y.Ito O. J. Org. Chem. 2004, 69: 2661 - 12 It has been previously reported that other 2,4-dinitro-phenylhydrazones fail to give cycloaddition reactions. See:
Yap GPA.Alkorta I.Jarerovic N.Elguero J. Aust. J. Chem. 2004, 57: 1103 ; and references therein - 14
Delgado JL.de la Cruz P.Lopez-Arza V.Langa F.Gan Z.Araki Y.Ito O. Bull. Chem. Soc. Jpn. 2005, 78: 1500 - 15
March J. Advanced Organic Chemistry: Reactions, Mechanisms and Structure 5th ed.: McGraw-Hill; New York: 2001. p.696-699 - 16
Shackelford SA.Anderson MB.Christie LC.Goetzen T.Guzman MC.Hananel MA.Kornreich WD.Li H.Pathak VP.Rabinovich AK.Rajapakse RJ.Truesdale LK.Tsank SM.Vazir HN. J. Org. Chem. 2003, 68: 267 - 18
Langa F.De la Cruz P.Delgado JL.Espildora E.Gómez-Escalonilla MJ.De la Hoz A. J. Mater. Chem. 2002, 12: 2130 - 19
Ajamaa F.Figueira Duarte TM.Bourgogne C.Holler M.Fowler PW.Nierengarten JF. Eur. J. Org. Chem. 2005, 3766 - 20
Illescas BM.Martin N. J. Org. Chem. 2000, 65: 5986
References and Notes
Compound 2b: A solution of p-nitrophenylhydrazine (1.0 g, 6.5 mmol), 3,5,5-trimethylhexanal (0.82 g, 6.5 mmol) and two drops of AcOH in EtOH (50 mL) was heated under reflux for 2 h. The solid was filtered off and recrystallized in EtOH to give 2b as a red solid (1.47 g, 82%); mp 82.3-82.7 °C. 1H NMR (200 MHz, CDCl3): δ = 8.13 (d, J = 9.2 Hz, 2 H), 7.90 (s, 1 H), 7.19 (t, 1 H), 6.99 (d, J = 9.2 Hz, 2 H), 2.10-2.40 (m, 2 H), 1.85 (m, 1 H), 1.32 (dd, J
1 = 3.4 Hz, J
2 = 14.0 Hz, 1 H), 1.13 (dd, J
1 = 6.2 Hz, J
2 = 14.0 Hz, 1 H), 1.01 (d, J = 6.6 Hz, 3 H), 0.91 (s, 9 H). 13C NMR (50 MHz, CDCl3): δ = 150.3, 145.3, 144.5, 140.4, 139.7, 126.4, 126.3, 112.0, 111.3, 50.8, 50.6, 41.6, 35.7, 31.3, 31.3, 30.1, 28.2, 27.7, 23.0, 22.8. FT-IR (ATR): 3289, 2941, 1617, 1511, 1335, 1266 cm-1. Anal. Calcd for C15H23N3O2: C, 64.95; H, 8.36; N. 15.15. Found: C, 64.43; H, 8.13; N, 15.21.
Compound 3b: To a solution of hydrazone 2b (115 mg, 0.41 mmol) in anhyd CHCl3 (10 mL) was added, under an Ar atmosphere, NBS (148 mg, 0.82 mmol). The mixture was kept under agitation during 2 h at r.t. The solvent was removed and an anhyd toluene (250 mL) solution of C60 (300 mg) and Et3N in excess were then added. The reaction was kept under agitation at r.t. for 1.75 h. The toluene was then evaporated under vacuum. The remaining solid was purified by column chromatography (silica gel; toluene-hexane, 2:1) to give 3b in 41% yield. 1H NMR (200 MHz, CDCl3): δ = 8.30 (d, J = 9.6 Hz, 2 H), 8.16 (d, J = 9.6 Hz, 2 H), 3.15 (dd, J
1 = 5.9 Hz, J
2 = 16.0 Hz, 1 H), 2.99 (dd, J
1 = 8.0 Hz, J
2 = 16.0 Hz, 1 H), 2.53 (m, 1 H), 1.65 (dd, J
1 = 4.2 Hz, J
2 = 14.6 Hz, 1 H), 1.37 (dd, J
1 = 6.6 Hz, J
2 = 14.7 Hz, 1 H), 1.33 (d, J = 6.5 Hz, 3 H), 0.99 (s, 9 H). 13C NMR (50 MHz, CDCl3): δ = 150.47, 149.15, 147.94, 147.39, 146.75, 146.67, 146.56, 146.39, 146.34, 146.16, 145.76, 145.61, 145.53, 145.47, 145.34, 144.89, 144.64, 144.35, 143.74, 143.46, 143.20, 143.11, 142.64, 142.60, 142.50, 142.29, 141.82, 141.22, 141.14, 139.52, 139.44, 137.25, 136.24, 136.13, 129.28, 128.47, 125.76, 125.54, 118.58, 88.84, 84.28, 51.56, 39.37, 31.53, 31.21, 30.50, 29.96, 28.64, 23.34. FT-IR (KBr): 2941, 1597, 1535, 1335, 530 cm-1. MALDI-TOF: m/z calcd for C75H21N3O2: 995.98; found: 995.9.
Experimental Procedure: To an anhyd CH2Cl2 solution of the corresponding fullerene derivative 2 (1 equiv) in CH2Cl2, tetramethylammonium nitrate (2 equiv) was added under Ar. The solution was cooled to the desired temperature and triflic anhydride (2 equiv) was added. NO2OTf was formed in situ and the solution was kept at this temperature until the complete disappearance of the starting material (the reaction progression was followed by TLC). The reaction was then quenched by adding a Na2CO3 solution (pH 8). The organic layer was separated, dried and evaporated. The remaining solid was purified by column chromatography affording the desired compounds 1a-d.
Compound 1a: reaction temperature: -5 °C for 4 h. Column chromatography (silica gel; toluene-hexane, 1:2); yield: 90%. 1H NMR (500 MHz, CDCl3): δ = 8.80 (d, J = 2.5 Hz, 1 H), 8.45 (dd, J
1 = 2.5 Hz, J
2 = 9.0 Hz, 1 H), 8.40 (sd, J = 9.0 Hz, 1 H), 2.79 (s, 3 H).13C NMR (125 MHz, CDCl3): δ = 149.36, 147.79, 147.21, 146.38, 146.32, 146.08, 145.96, 145.34, 145.49, 145.29, 145.28, 145.24, 144.41, 144.23, 144.09, 143.97, 143.21, 143.07, 143.04, 142.95, 142.93, 142.84, 142.40, 142.24, 142.18, 142.05, 142.02, 141.06, 139.81, 137.31, 136.55, 127.10, 126.28, 122.22, 88.90, 83.39, 15.03. FT-IR (KBr): 2917, 2357, 1601, 1527, 1331, 526 cm-1. UV-Vis: λ (log ε) = 255.0 (6.1), 320.0 (5.6) nm. MALDI-TOF: m/z calcd for C68H6N4O4: 942.94; found: 942.0.
Compound 1b: reaction temperature: -5 °C for 5 h. Column chromatography (silica gel; toluene-hexane, 1:2); yield: 85%. 1H NMR (500 MHz, CDCl3): δ = 8.78 (d, J = 2.4 Hz, 1 H), 8.44 (dd, J
1 = 2.5 Hz, J
2 = 9.0 Hz, 1 H), 8.40 (sd, J = 9.0 Hz, 1 H), 3.11 (dd, J
1 = 4.6 Hz, J
2 = 16.5 Hz, 1 H), 2.95 (dd, J
1 = 8.8 Hz, J
2 = 16.5 Hz, 1 H), 2.45 (m, 1 H), 1.54 (dd, J
1 = 4.5 Hz, J
2 = 14.0 Hz, 1 H), 1.33 (dd, J
1 = 6.2 Hz, J
2 = 14.0 Hz, 1 H), 1.27 (d, J = 6.6 Hz, 3 H), 0.99 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 151.63, 147.77, 147.20, 146.37, 146.36, 146.31, 146.31, 146.07, 146.06, 146.05, 145.96, 145.95, 145.55, 145.53, 145.51, 145.46, 145.43, 145.42, 145.32, 145.29, 145.28, 145.26, 145.25, 144.40, 144.29, 144.24, 144.10, 144.09, 144.06, 143.21, 143.01, 142.97, 142.85, 142.83, 142.75, 142.42, 142.40, 142.26, 142.24, 142.19, 142.16, 142.12, 142.10, 142.01, 142.00, 140.95, 140.90, 139.84, 139.79, 137.31, 136.45, 136.26, 126.99, 126.00, 122.19, 88.84, 83.84, 51.39, 39.25, 31.26, 30.04, 28.07, 22.98. FT-IR (KBr): 2941, 2337, 1597, 1540, 1335, 526 cm-1. UV-Vis: λ (log ε) = 255.0 (6.2), 320.0 (5.7) nm. MALDI-TOF: m/z calcd for C75H20N4O4: 1040.98; found: 1040.1.
Compound 1c: reaction temperature: r.t. for 2 h. Column chromatography (silica gel; toluene-hexane, 2:1); yield: 65%. 1H NMR (500 MHz, CDCl3): δ = 8.87 (d, J = 2.5 Hz, 1 H), 8.52 (dd, J
1 = 2.5 Hz, J
2 = 9.0 Hz, 1 H), 8.49 (sd, J = 9.0 Hz, 1 H), 8.38 (d, J = 9.0 Hz, 2 H), 8.36 (d, J = 9.0 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 148.61, 147.79, 147.32, 147.13, 146.46, 146.42, 146.14, 146.08, 145.60, 145.56, 145.38, 145.33, 145.16, 144.69, 144.33, 144.16, 144.15, 144.08, 143.95, 143.28, 143.07, 142.99, 142.94, 142.49, 142.32, 142.26, 142.08, 141.99, 141.95, 140.64, 140.12, 137.38, 137.21, 136.90, 129.73, 127.32, 127.13, 124.24, 122.20, 91.39, 81.42. FT-IR (KBr): 2357, 1597, 1535, 1335, 526. UV-Vis: λ (log ε) = 245.5 (6.3), 321.5 (5.9) nm. MALDI-TOF: m/z calcd for C73H7N5O6: 1049.87; found: 1050.2.
Compound 1d: reaction temperature: r.t. for 3 h. Column chromatography (silica gel; toluene-hexane, 1:2); yield: 47%. 1H NMR (500 MHz, CDCl3): δ = 8.88 (d, J = 2.5 Hz, 1 H), 8.67 (br s, 2 H), 8.53 (dd, J
1 = 2.5 Hz, J
2 = 9.0 Hz, 1 H), 8.48 (sd, J = 9.0 Hz, 1 H), 8.00 (br s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 148.07, 147.58, 146.72, 146.68, 146.40, 146.35, 145.97, 145.79, 145.66, 145.59, 145.12, 144.59, 144.41, 144.16, 144.13, 143.54, 143.33, 143.25, 143.18, 142.73, 142.58, 142.53, 142.31, 142.25, 140.89, 140.40, 137.64, 137.29, 133.46, 132.90, 132.63, 128.93, 127.57, 124.26, 123.99, 122.43, 122.11, 91.81, 81.44. FT-IR (KBr): 2921, 2332, 1597, 1531, 1331, 1274, 1135, 526 cm-1. UV-Vis: λ (log ε) = 254.5 (6.1), 319.0 (5.7) nm. MALDI-TOF: m/z calcd for C75H6F6N4O4: 1140.86; found: 1141.2.