References and Notes
1a Freidinger RM, Evans BE, and Bock MG. inventors; EP 523846.
; Chem. Abstr. 1993, 119, 8838
1b Freidinger RM, Bock MG, and Evans BE. inventors; EP 272866.
; Chem. Abstr. 1989, 110, 23918
1c Rajagopalan P. inventors; US 4438120.
; Chem. Abstr. 1984, 101, 7218
1d Hara T, Kayama Y, Ito K, Mori T, Fujimori H, Sunami T, Hashimoto Y, and Ishimoto S. inventors; JP 53068594.
; Chem. Abstr. 1978, 89, 129550
1e Hara T, Kayama Y, Itoh K, Mori T, Fujimori H, Sunami T, Hashimoto Y, and Ishimoto S. inventors; DE 2651809.
; Chem. Abstr. 1977, 87, 168105
1f
Corelli F.
Massa S.
Pantaleoni GC.
Palumbo G.
Fanini D.
Farmaco, Ed. Sci.
1984,
39:
707
2 Lin JH, Ramjit HG, Pitzenberger SM, and Ulm EH. inventors; US 4939139.
; Chem. Abstr. 1990, 113, 191344
3 Hara T, Shikayama Y, Ito K, Mori T, Fujimori H, Sunami T, Hashimoto Y, and Ishimoto Y. inventors; JP 61001433.
; Chem. Abstr. 1986, 104, 186459
4a Saito Sh, Umemiya H, Suga Y, Sato M, and Kawashima N. inventors; WO 2003095427.
; Chem. Abstr. 2003, 139, 395821
4b
Corelli F.
Massa S.
Stefancich G.
Ortenzi G.
Artico M.
Pantaleoni G.
Palumbo G.
Fanini D.
Giorgi R.
Eur. J. Med. Chem.
1986,
21:
445
5 Ivashchenko AV, Vvedensky VYu, Ilyn AP, Kysel VM, Khvat AV, Kuzovkova YuA, Kutepov SA, Dmitrieva IG, Zolotarev DA, Tkachenko SYe, Okun IM, Kravchenko DV, Kobak VV, Trifilenkov AS, Mishunina YuS, Loseva MV, Rizhova EA, Parchinsky VZ, Tsirulnikov SA, and Kyselev AS. inventors; WO 2005105805.
; Chem. Abstr. 2005, 143, 452852
6a Gilkerson T, Nash RJ, Van Gestel JFE, and Meerpoel L. inventors; WO 2002034752.
; Chem. Abstr. 2002, 136, 340708
6b
Meerpoel L.
Van Gestel J.
Van Gerven F.
Woestenborghs F.
Marichal P.
Sipido V.
Gilkerson T.
Nash R.
Corens D.
Richards RD.
Bioorg. Med. Chem. Lett.
2005,
15:
3453
7a
Mai A.
Di Santo R.
Massa S.
Artico M.
Pantaleoni GC.
Giorgi R.
Coppolino MF.
Barracchini A.
Eur. J. Med. Chem.
1995,
30:
593
7b
Massa S.
Di Santo R.
Costi R.
Artico M.
J. Heterocycl. Chem.
1993,
30:
749
7c
Massa S.
Mai A.
Di Santo R.
Artico M.
J. Heterocycl. Chem.
1993,
30:
897
7d
De Martino G.
Scalzo M.
Massa S.
Giuliano R.
Artico M.
Farmaco, Ed. Sci.
1972,
27:
980
7e
Vega S.
Gil MS.
J. Heterocycl. Chem.
1991,
28:
945
8a
Othman M.
Pigeon P.
Netchitailo P.
Daich A.
Decroix B.
Heterocycles
2000,
52:
273
8b
Massa S.
Mai A.
Artico M.
Corelli F.
Botta M.
Tetrahedron
1989,
45:
2763
8c
Massa S.
Artico M.
Mai A.
Mancuso A.
Corelli F.
J. Heterocycl. Chem.
1992,
29:
1851
9a
Cheeseman GWH.
Greenberg SG.
J. Heterocycl. Chem.
1979,
16:
241
9b
Raines S.
Chai SY.
Palopoli FP.
J. Heterocycl. Chem.
1976,
13:
711
9c
Vega S.
Gil MS.
J. Heterocycl. Chem.
1991,
28:
945
9d
Rault I.
Rault S.
Robba M.
Heterocycles
1994,
38:
811
10
Hara T.
Kayama Y.
Mori T.
Itoh K.
Fujimori H.
Sunami T.
Hashimoto Y.
Ishimoto S.
J. Med. Chem.
1978,
21:
263
11
Fujimori H.
Kayama Y.
Hara T.
Itoh K.
Sunami T.
J. Heterocycl. Chem.
1977,
14:
235
12
Ilyn AP.
Trifilenkov AS.
Kuzovkova YuA.
Kutepov SA.
Nikitin AV.
Ivachtchenko AV.
J. Org. Chem.
2005,
70:
1478
For reviews, see:
13a
Dean FM.
Adv. Heterocycl. Chem.
1982,
30:
167
13b
Dean FM.
Adv. Heterocycl. Chem.
1982,
31:
237
13c
Piancatelli G.
D’Auria M.
D’Onofrio F.
Synthesis
1994,
867
13d
Butin AV.
Stroganova TA.
Abaev VT.
Gutnov AV.
Targets in Heterocyclic Systems: Chemistry and Properties
2001,
5:
131
14a
Gutnov AV.
Butin AV.
Abaev VT.
Krapivin GD.
Zavodnik VE.
Molecules
1999,
4:
204
14b
Butin AV.
Stroganova TA.
Lodina IV.
Krapivin GD.
Tetrahedron Lett.
2001,
42:
2031
14c
Gutnov AV.
Abaev VT.
Butin AV.
Dmitriev AS.
J. Org. Chem.
2001,
66:
8685
14d
Butin AV.
Abaev VT.
Mel’chin VV.
Dmitriev AS.
Tetrahedron Lett.
2005,
46:
8439
14e
Butin AV.
Smirnov SK.
Stroganova TA.
J. Heterocycl. Chem.
2006,
43:
623
14f
Butin AV.
Tetrahedron Lett.
2006,
47:
4113
14g
Butin AV.
Dmitriev AS.
Abaev VT.
Zavodnik VE.
Synlett
2006,
3431
15
General Procedure for the Preparation of Compounds 2a,b
To a stirred solution of 5-methylfurfurylamine (12 mmol) in anhyd benzene (30 mL) a solution of 2-nitrobenzoyl or 2-nitroveratroyl chloride (10 mmol) in benzene (30 mL) was added dropwise over 30 min. The reaction mixture was agitated at r.t. for an additional 1 h and then cold sat. aq Na2CO3 (50 mL) was added. The organic layer was separated, washed with H2O, dried over Na2SO4 and concentrated in vacuo. The residue was crystallized from PE-CH2Cl2.
Selected analytical data for 2b: mp 166-167 °C. IR: νmax = 3260, 1642, 1580, 1519, 1339, 1289, 1267, 1226, 1052, 994, 872, 789 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.28 (s, 3 H, CH3), 3.96 (s, 3 H, OCH3), 3.97 (s, 3 H, OCH3), 4.58 (d, 2 H, J = 5.3 Hz, CH2), 5.85 (d, 1 H, J = 3.0 Hz, HFur), 5.98 (br s, 1 H, NH), 6.22 (d, 1 H, J = 3.0 Hz, HFur), 6.91 (s, 1 H, HAr), 7.90 (s, 1 H, HAr). MS: m/z (%) = 302 (10) [M+ - 18], 215 (22), 194 (58), 181 (22), 164 (49), 150 (13), 136 (76), 110 (100), 95 (96). Anal. Calcd for C15H16N2O6: C, 56.25; H, 5.03; N, 8.75. Found: C, 56.12; H, 5.09; N, 8.80.
16
General Procedure for the Preparation of Compounds 3a,b
A mixture of amide 2a,b (4.3 mmol), hydrazine hydrate (1.5 mL) and activated Raney nickel (1.0 g) in EtOH (60 mL) was refluxed for 10-20 min until complete conversion of 2a,b (TLC). The mixture was filtered, and the filtrate was evaporated to dryness under reduced pressure. The residue was decolorized with charcoal in EtOAc-PE solution. The solvent was removed in vacuo and the resulting product was recrystallized from PE-CH2Cl2 to afford amino amides 3a,b.
Selected analytical data for 3b: mp 125-126 °C. IR: νmax = 3373, 3293, 1629, 1592, 1535, 1509, 1453, 1361, 1262, 1209, 1171, 1104, 1024, 887, 829, 780 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.29 (s, 3 H, CH3), 3.82 (s, 3 H, OCH3), 3.86 (s, 3 H, OCH3), 4.53 (d, 2 H, J = 5.3 Hz, CH2), 5.42 (br s, 2 H, NH2), 5.92 (d, 1 H, J = 3.0 Hz, HFur), 6.17 (d, 1 H, J = 3.0 Hz, HFur), 6.19 (br s, 2 H, NH + HAr), 6.82 (s, 1 H, HAr). MS: m/z (%) = 290 (9) [M+], 180 (22), 110 (89), 95 (100). Anal. Calcd for C15H18N2O4: C, 62.06; H, 6.25; N, 9.65. Found: C, 62.14; H, 6.19; N, 9.60.
17
General Procedure for the Preparation of Compounds 5a,b
A mixture of amino amide 3a,b (2 mmol), glacial AcOH (10 mL) and concd HCl (1.5 mL) was kept at 60-70 °C until complete conversion of the initial compounds (TLC). The reaction mixture was poured into iced H2O (100 mL) and neutralized with NaHCO3 to approximately pH 7. The precipitate thus obtained was filtered off, washed with H2O, air-dried and dissolved in EtOAc-PE. The solution was passed through a pad of silica gel and left for crystallization.
Selected analytical data for 5b: mp 195-196 °C. IR: νmax = 3189, 1652, 1609, 1514, 1458, 1256, 1213, 1127, 1040, 1017, 926, 872, 799 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.34 (s, 3 H, CH3), 3.93 (s, 3 H, OCH3), 3.96 (s, 3 H, OCH3), 4.08-4.13 (m, 2 H, CH2), 5.99 (d, 1 H, J = 3.2 Hz, HPyr), 6.02 (d, 1 H, J = 3.2 Hz, HPyr), 6.77 (s, 1 H, HAr), 7.01 (br s, 1 H, NH), 7.44 (s, 1 H, HAr). 13C NMR (50 MHz, CDCl3): δ = 14.4, 38.2, 56.2, 104.6, 108.2, 109.5, 112.8, 121.4, 129.1, 130.1, 132.9, 147.2, 151.1, 170.3. MS: m/z (%) = 272 (100) [M+], 257 (30), 244 (16), 243 (57), 229 (24), 228 (66), 200(16), 198 (15), 185 (12), 172 (14), 170 (14), 165 (33), 122 (19). Anal. Calcd for C15H16N2O3: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.10; H, 5.99; N, 10.23.
18
General Procedure for the Preparation of Compounds 7a-c
To a suspension of pyridinethione 6 (10 mmol) in EtOH (75 mL) KOH (10 mmol, 10% aq soln) was added and the reaction mixture was heated until the complete dissolution of 6. Chloroacetamide was added and, after 15 min, the mixture was treated with a further portion of KOH (10 mmol, 10% aq soln). The solution thus obtained was allowed to stand for 2 h at r.t. The mixture was quenched with H2O (25 mL) and the precipitate formed was separated by filtration. The crystals were dried and recrystallized from EtOH-DMF (10:3).
Selected analytical data for 7c: mp 77-78 °C. IR: νmax = 3404, 3313, 3241, 1657, 1594, 1544, 1501, 1417, 1305, 1294, 1269, 1218, 1198, 1186, 1155, 1088, 1071, 1016, 918, 865, 799, 752, 705 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.24 (s, 3 H, CH3), 2.57 (s, 3 H, CH3), 3.38 (s, 3 H, OCH3), 4.34 (d, 2 H, J = 5.2 Hz, CH2Fur), 4.83 (s, 2 H, CH
2OCH3), 5.98 (d, 1 H, J = 3.0 Hz, HFur), 6.10 (d, 1 H, J = 3.0 Hz, HFur), 6.91 (br s, 2 H, NH2), 7.24 (s, 1 H, CHPy), 8.13 (t, J = 5.2 Hz, NH). MS: m/z (%) = 345 (51) [M+], 235 (33), 219 (16), 208 (10), 204 (11), 175 (10), 110 (69), 96 (12), 95 (100). Anal. Calcd for C17H19N3O3S: C, 59.11; H, 5.54; N, 12.17. Found: C, 59.17; H, 5.49; N, 12.21.
19
Kaigorodova EA.
Konyushkin LD.
Mikhailichenko SN.
Vasilin VK.
Kul’nevich VG.
Khim. Geterotsikl. Soedin.
1996,
1432
20 Compounds 8a-c were prepared from 6a-c similarly to 5a,b (see ref. 17).
Selected analytical data for compound 8c: mp 240-241 °C. IR: νmax = 3168, 1640, 1584, 1549, 1527, 1517, 1345, 1267, 1255, 1213, 1198, 1155, 1109, 942, 859, 804, 777, 752 cm-1. 1H NMR (300 MHz, DMSO-d
6): δ = 1.93 (s, 3 H, CH3), 2.65 (s, 3 H, CH3), 3.23 (s, 3 H, OCH3), 4.13 (d, J = 13.2 Hz, 1 H, CH2), 4.15 (d, J = 5.2 Hz, 2 H, CH2), 4.48 (d, J = 13.2 Hz, 1 H, CH2), 6.10 (s, 2 H, HPyr), 7.45 (s, 1 H, HPy), 8.72 (t, J = 5.2 Hz, NH). 13C NMR (50 MHz, CDCl3): δ = 13.1, 24.0, 37.7, 58.2, 69.0, 105.7, 109.8, 120.0, 123.4, 128.3, 129.3, 129.6, 134.4, 144.1, 158.2, 158.7, 163.5. MS: m/z (%) = 327 (100) [M+], 312 (11), 284 (10), 283 (84), 280 (32), 268 (18), 267 (14), 266 (20), 253 (18), 240 (15), 239 (22), 238 (12), 225 (13), 218 (15), 217 (49), 190 (47), 189 (12), 149 (12), 133 (16). Anal. Calcd for C17H17N3O2S: C, 62.37; H, 5.23; N, 12.83. Found: C, 62.30; H, 5.29; N, 12.89.