RSS-Feed abonnieren
DOI: 10.1055/s-2007-977448
Lithium Naphthalenide Induced Reductive Selenenylation of α-Cyano Ketones: A Regiocontrolled Process for α-Phenylseleno Ketones and One-Pot Conversion into Enone System
Publikationsverlauf
Publikationsdatum:
08. Mai 2007 (online)
Abstract
An efficient procedure for the regiocontrolled synthesis of α-phenylseleno ketones has been developed, making use of the lithium naphthalenide induced reductive selenenylation of the α-cyano ketone system as a key operation. Moreover, seleno ketones thus generated in situ, upon subsequent treatment with hydrogen peroxide and acetic acid, could be further converted into the corresponding enones with a high degree of regioselectivity, presumably due to the lithium salt mediated selenoxide syn-elimination process.
Key words
lithium naphthalenide - α-phenylseleno ketones - regioselectivity - α-cyano ketones - reductive selenenylation
- For leading references, see:
-
1a
Larock RC. Comprehensive Organic Transformation 2nd ed.: Wiley; New York: 1999. -
1b
Liotta D.Barnum C.Puleo R.Zima G.Bayer C.Kezar HS. J. Org. Chem. 1981, 46: 2920 -
1c
Bernardi A.Karamfilova K.Sanguinetti S.Scolastico C. Tetrahedron 1997, 53: 13009 -
1d
Honda T.Rounds BA.Gribble GW.Suh NY.Wang P.Sporn MP. Bioorg. Med. Chem. Lett. 1998, 20: 2711 -
1e
Smith ND.Hayashida J.Rawal VH. Org. Lett. 2005, 7: 4309 -
2a
Kusuda S.Watanabe Y.Ueno Y.Toru T. J. Org. Chem. 1992, 57: 3145 -
2b
Back TG. Organoselenium Chemistry: A Practical Approach Oxford University Press; New York: 1999. - 3
Cotgreave IA.Moldeus P.Brattsand R.Hallberg A.Andersson CM.Engman L. Biochem. Pharmacol. 1992, 43: 793 -
4a
Mugesh G.duMont WW.Sies H. Chem. Rev. 2001, 101: 2125 -
4b
Nogueira CW.Zeni G.Rocha JBT. Chem. Rev. 2004, 104: 6255 - In humans, 25 selenoproteins have been identified, many of which possess unknown functions and remain to be explored. For the leading references, see:
-
5a
Kryukov GV.Castellano S.Novoselov SV.Lobanov AV.Zehtab O.Guigo R.Gladyshev VN. Science 2003, 300: 1439 -
5b
May SW. Exp. Opin. Invest. Drugs 1999, 8: 1017 -
5c
Medina D.Thompson H.Ganther H.Ip C. Nutr. Cancer. 2001, 40: 12 - 6
Navsariwala VD.Prins GS.Swanson SM.Birch LA.Ray VH.Hedayat S.Lantyit DL.Diamond AM. Proc. Natl. Acad. Sci. U.S.A. 2006, 103: 8179 - 7 For recent examples, see:
Wang J.Li H.Mei Y.Lou B.Xu D.Xie D.Guo H.Wang W. J. Org. Chem. 2005, 70: 5678 ; and references cited therein - 8
Girlanda JC.Keyling BF.Schmitt G.Luu B. Tetrahedron 1998, 54: 7735 -
9a
Reich HJ.Renga JM.Reich IL. J. Am. Chem. Soc. 1975, 97: 5434 -
9b
Wang W.Mei Y.Li H.Wang J. Org. Lett. 2005, 7: 601 -
9c
Reich HJ.Reich IL.Renga JM. J. Am. Chem. Soc. 1973, 95: 5813 -
9d
Clive DLJ. Chem. Commun. 1973, 695 -
9e
Liotta D.Saindane M.Monahan R.Brothers D.Fivush A. Synth. Commun. 1986, 16: 1461 - 10
Cossy J.Furet N. Tetrahedron Lett. 1993, 48: 7755 - 11
Torii S.Uneyama K.Handa K. Tetrahedron Lett. 1980, 21: 1863 - 12 For preparing a stock solution of LN, see:
Liu HJ.Yip J.Shia KS. Tetrahedron Lett. 1997, 38: 2253 - 13
Zhu JL.Shia KS.Liu HJ. Chem. Commun. 2000, 1599 - 15
Marshall JA.Peterson JC.Lebioda L. J. Am. Chem. Soc. 1984, 106: 6006 - 16
Seishiand T.Hiroyuki Y. Yakugaku Zasshi 1959, 79: 467 - 17
Kahne D.Collum DB. Tetrahedron Lett. 1981, 22: 5011 - 19
Kishi N.Mikami K.Nakai T. Tetrahedron 1991, 47: 8111 - 20
Negishi E.Tan Z.Liou SY.Liao B. Tetrahedron 2000, 56: 10197 - 21
Kreher UP.Rosamilia AE.Raston CL.Scott JL.Strauss CR. Org. Lett. 2003, 5: 3107 - 22
Yanagisawa A.Goudu R.Arai T. Org. Lett. 2004, 6: 428
References and Notes
Satisfactory spectral and LC-MS or HRMS analytical data were obtained for all new compounds. A typical experiment is outlined as follows: To a solution of α-cyano ketone 1 (110 mg, 0.55 mmol) in THF (10 mL) at -40 °C was added LN (7.5 mL, 0.365 M, 2.75 mmol) dropwise. The resulting dark green solution was stirred at the same temperature for 20 min followed by addition of phenylselenyl bromide (156 mg, 0.66 mmol) in one portion. The resulting mixture was continued to stir for additional 30 min at -40 °C and then quenched with sat. aq NH4Cl and extracted with EtOAc (2 × 10 mL). The combined extracts were washed with brine, dried with Na2SO4, and concentrated to give the crude residue, which was subjected to flash chromatography on silica gel (EtOAc-n-hexane, 1:50) to afford the corresponding α-phenylseleno ketone 2 as a colorless oil (165 mg, 90%). IR (neat): 1729, 1604, 1577 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.72-2.13 (m, 5 H), 2.59 (ddd, J = 18.1, 8.1, 2.0 Hz, 1 H), 3.08 (d, J = 13.7 Hz, 1 H), 3.27 (d, J = 13.7 Hz, 1 H), 7.08-7.11 (m, 2 H), 7.19-7.25 (m, 3 H), 7.30-7.35 (m, 2 H), 7.39-7.45 (m, 1 H), 7.52-7.61 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 18.4, 33.0, 36.1, 41.0, 59.5, 126.5, 126.6, 128.3, 129.0, 129.6, 130.5, 137.6, 138.0, 211.6. MS (EI): m/z = 331.2 [M + 1]. Instead of quenching with sat. aq NH4Cl, after ketone 2 was generated in situ following the aforementioned protocol, AcOH (0.13 mL, 2.21 mmol) and H2O2 (0.43 mL of 35% H2O2, 4.41 mmol) were sequentially added to the above reaction mixture at -40 °C. The resulting solution was then warmed to 0 °C in 40 min and quenched with sat. aq NaHCO3 followed by extraction with EtOAc (2 × 10 mL). The combined organic layers were washed with H2O, brine, dried with Na2SO4, and concentrated to give the crude product, which was purified by flash chromatography on silica gel (EtOAc-n-hexane, 1:25) to give exo-(E)-13
9a,b (81 mg) in 85% yield over two steps.
(E)-2-Benzylidenecyclopentanone (13): IR (neat): 1706, 1622, 1487 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.04 (m, 2 Η), 2.42 (t, J = 7.9 Hz, 2 H), 2.98 (dt, J = 7.2, 2.7 Hz, 2 H), 7.36-7.44 (m, 4 H), 7.54 (dd J = 7.4, 1.1 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 20.2, 29.4, 37.8, 128.7, 129.3, 130.5, 132.3, 135.6, 136.1, 208.0. HRMS (EI): m/z calcd for C12H12O: 172.0889; found: 172.0877.
2-Allyl-2-phenylselenocycloheptanone (6a): IR (KBr): 3072, 2926, 2855, 1686, 740, 691 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.14-1.27 (m, 1 H), 1.33-1.46 (m, 2 H), 1.61 (dd, J = 14.7, 10.7 Hz, 1 H), 1.73-1.94 (m, 3 H), 2.21-2.30 (m, 2 H), 2.40-2.48, (m, 2 H), 3.17 (td, J = 11.2, 2.4 Hz, 1 H), 5.06 (br d, J = 17.1 Hz, 1 H), 5.14 (br d, J = 10.5 Hz, 1 H), 5.92-6.05 (ddm, J = 17.1, 10.5 Hz, 1 H), 7.26-7.31 (tm, J = 7.2 Hz, 2 H), 7.34-7.41 (m, 1 H), 7.41-7.46 (dm, J = 7.2 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 24.9, 26.3, 30.4, 32.1, 36.9, 39.6, 60.7, 118.2, 127.2, 129.0, 129.4, 135.1, 137.5, 207.3. LC-MS (ES): m/z = 331 [M + 23]+.
(E)-2-Allylidenecycloheptanone (18): IR (neat): 1699, 1613, 1579 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.62-1.80 (m, 6 H), 2.47-2.57 (m, 2 H), 2.62-2.68 (m, 2 H), 5.49 (dd, J = 9.9, 1.7 Hz, 1 H), 5.63 (dd, J = 16.7, 1.7 Hz, 1 H), 6.63 (ddd, J = 16.7, 11.5, 9.9 Hz, 1 H), 7.00 (d, J = 11.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 25.3, 27.5, 29.8, 31.3, 43.4, 125.4, 131.6, 135.2, 140.3, 204.8. LC-MS (ES): m/z = 151 [M + 1]+.
1-Benzoyl-4,6,6-trimethylcyclohex-3-enecarbonitrile (10): IR (KBr): 2232, 1692, 1596, 1578 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.12 (s, 3 H), 1.21 (s, 3 H), 1.72 (br s, 3 H), 1.96 (d, J = 17.9 Hz, 1 H), 2.31 (d, J = 17.9 Hz, 1 H), 2.58 (br d, J = 17.8 Hz, 1 H), 2.90 (br d, J = 17.8 Hz, 1 H), 5.32 (br s, 1 H), 7.42-7.48 (tm, J = 7.3 Hz, 2 H) 7.52-7.58 (tm, J = 7.3 Hz, 1 H), 8.04-8.08 (dm, J = 7.3 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 22.7, 23.8, 27.7, 33.1, 36.7, 44.0, 53.2, 115.2, 121.7,128.4, 129.1, 132.9, 133.9, 137.5, 195.3. LC-MS (ES): m/z = 253 [M]+.
1-Benzoyl-3,4,6,6-tetramethylcyclohex-3-enecarbonitrile (11): IR (KBr): 2232, 1692, 1595, 1578 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.08 (s, 3 H), 1.20 (s, 3 H), 1.66 (br s, 6 H), 1.90 (d, J = 17.8 Hz, 1 H), 2.38 (br d, J = 18.0 Hz, 1 H), 2.44 (d, J = 17.8 Hz, 1 H), 2.88 (br d, J = 18.0 Hz, 1 H), 7.43-7.48 (tm, J = 7.8 Hz, 2 H), 7.53-7.59 (tm, J = 7.8 Hz, 1 H), 8.04-8.08 (dm, J = 7.8 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 18.4, 19.0, 22.5, 27.7, 36.6, 38.6, 45.7, 51.4, 120.3, 121.8, 125.2, 128.4, 129.1, 132.8, 137.8, 195.4. LC-MS (ES): m/z = 267 [M]+.
It was reported by Reich et al.,9a that treatment of compound 2 with H2O2 (8.8 equiv) in CH2Cl2 containing a small portion of pyridine at 25 °C gave rise to a mixture of the exo- and endocyclic enones in a ratio of 1:1.3.