Abstract
Recyclable metal nanoparticles provide an efficient, economic, and novel route for
the synthesis of propargylamines via three-component A3 coupling reaction of aromatic aldehyde, amine and alkyne. This method provides a
wide range of substrate applicability. This protocol avoids the use of heavy metal,
co-catalyst and gives propargylamines in quantitative yield.
Key words
metal nanoparticles - propargylamines - heterogeneous catalysis - cyclic secondary
amines - one-pot multicomponent reaction
References and Notes
<A NAME="RG08107ST-1A">1a </A>
Li CJ.
Acc. Chem. Res.
2002,
35:
533
<A NAME="RG08107ST-1B">1b </A>
Sonogashira K. In
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
John Wiley and Sons;
New York:
2002.
p.493
<A NAME="RG08107ST-1C">1c </A>
Dyker G.
Angew. Chem. Int. Ed.
1999,
38:
1698
<A NAME="RG08107ST-2A">2a </A>
Yan W.
Wang R.
Xu Z.
Xu J.
Lin L.
Shen Z.
Zhou Y.
J. Mol. Catal. A: Chem.
2006,
25:
81
<A NAME="RG08107ST-2B">2b </A>
Kidwai M.
Bansal V.
Saxena A.
Aerry S.
Mozumdar S.
Tetrahedron Lett.
2006,
47:
8049
<A NAME="RG08107ST-2C">2c </A>
Wang Z.
Xiao P.
Shen B.
He N.
Coll. Surf. A
2006,
276:
116
<A NAME="RG08107ST-3">3 </A>
Catalysis: An Integrated Approach , In Studies in Surface Science and Catalysis, Vol. 123
2nd ed.:
Vansanten RA.
VanLeeuwen PWNM.
Moulijn JA.
Averill BA.
Elsevier;
Amsterdam:
1999.
<A NAME="RG08107ST-4">4 </A>
Klabunde JK.
Nanoscale Materials in Chemistry
John Wiley and Sons;
New York:
2001.
p.226
<A NAME="RG08107ST-5A">5a </A>
Boulton AA.
Davis BA.
Durden DA.
Dyck LE.
Juorio AV.
Li XM.
Paterson IA.
Yu PH.
Drug Dev. Res.
1997,
42:
150
<A NAME="RG08107ST-5B">5b </A>
Huffman MA.
Yasuda N.
DeCamp AE.
Grabowski EJJ.
J. Org. Chem.
1995,
60:
1590
<A NAME="RG08107ST-5C">5c </A>
Konishi M.
Ohkuma H.
Tsuno T.
Oki T.
VanDuyne GD.
Clardy J.
J. Am. Chem. Soc.
1990,
112:
3715
<A NAME="RG08107ST-6A">6a </A>
Miura M.
Enna M.
Okuro K.
Nomura M.
J. Org. Chem.
1995,
60:
4999
<A NAME="RG08107ST-6B">6b </A>
Jenmalm A.
Berts W.
Li YL.
Luthman K.
Csoregh I.
Hacksell U.
J. Org. Chem.
1994,
59:
1139
<A NAME="RG08107ST-6C">6c </A>
Nilsson B.
Vargas HM.
Ringdahl B.
Hacksell U.
J. Med. Chem. Soc.
1992,
35:
285
<A NAME="RG08107ST-7A">7a </A>
Dyker G.
Angew. Chem.
1999,
38:
1698
<A NAME="RG08107ST-7B">7b </A>
Naota I.
Takaya H.
Murahashi SI.
Chem. Rev.
1998,
98:
2599
<A NAME="RG08107ST-8A">8a </A>
Yan W.
Wang R.
Xu Z.
Xu J.
Lin L.
Shen Z.
Zhou Y.
J. Mol. Catal. A: Chem.
2006,
255:
81
<A NAME="RG08107ST-8B">8b </A>
Zhang Y.
Santos AM.
Herdtweck E.
Mink J.
Kuhn FE.
New J. Chem.
2005,
29:
366
<A NAME="RG08107ST-8C">8c </A>
Wei C.
Li Z.
Li CJ.
Org. Lett.
2003,
5:
4473
<A NAME="RG08107ST-9A">9a </A>
Kantam ML.
Prakash BV.
Reddy C.
Reddy V.
Sreedhar B.
Synlett
2005,
2329
<A NAME="RG08107ST-9B">9b </A>
Wei C.
Li CJ.
J. Am. Chem. Soc.
2003,
125:
9584
<A NAME="RG08107ST-10">10 </A>
Lo VKY.
Liu Y.
Wong MK.
Che CM.
Org. Lett.
2006,
8:
1529
<A NAME="RG08107ST-11A">11a </A>
Shi L.
Tu YQ.
Wang M.
Zhang FM.
Fan CA.
Org. Lett.
2004,
6:
1001
<A NAME="RG08107ST-11B">11b </A>
Syeda HZS.
Halder R.
Karla SS.
Das J.
Iqbal J.
Tetrahedron Lett.
2002,
43:
6485
<A NAME="RG08107ST-11C">11c </A>
Kabalka GW.
Wang L.
Pagni RM.
Synlett
2001,
676
<A NAME="RG08107ST-11D">11d </A>
Ju Y.
Li CJ.
Varma RS.
QSAR Comb. Sci.
2004,
23
<A NAME="RG08107ST-11E">11e </A>
Orlandi S.
Colombo F.
Benaglia M.
Synthesis
2005,
1689
<A NAME="RG08107ST-11F">11f </A>
Gommermann N.
Knochel P.
Chem. Eur. J.
2006,
12:
4380
<A NAME="RG08107ST-11G">11g </A>
Bieber LW.
da Silva MF.
Tetrahedron Lett.
2004,
45:
8281
<A NAME="RG08107ST-12">12 </A>
Fischer C.
Carreira EM.
Org. Lett.
2001,
3:
4319
<A NAME="RG08107ST-13">13 </A>
Hua LP.
Lei W.
Chin. J. Chem.
2005,
23:
1076
<A NAME="RG08107ST-14">14 </A>
Li CJ.
Wei C.
Chem. Commun.
2002,
268
<A NAME="RG08107ST-15">15 </A>
Zhang L.
Wei C.
Varma RS.
Li CJ.
Tetrahedron Lett.
2004,
45:
2443
<A NAME="RG08107ST-16">16 </A>
Choudary BM.
Sridhar C.
Kantam ML.
Sridhar B.
Tetrahedron Lett.
2004,
45:
7319
<A NAME="RG08107ST-17">17 </A>
Leadbeater NE.
Torenius HM.
Tye H.
Mol. Diversity
2003,
7:
135
<A NAME="RG08107ST-18">18 </A>
Sreedhar B.
Reddy PS.
Prakash BV.
Ravindra A.
Tetrahedron Lett.
2005,
46:
7019
<A NAME="RG08107ST-19">19 </A>
Park SB.
Alper H.
Chem. Commun.
2005,
1315
<A NAME="RG08107ST-20A">20a </A>
Kidwai M.
Venkataramanan R.
Dave B.
Green Chem.
2001,
3:
278
<A NAME="RG08107ST-20B">20b </A>
Kidwai M.
Bansal V.
Mothsra P.
J. Mol. Catal. A: Chem.
2007,
268:
76
<A NAME="RG08107ST-20C">20c </A>
Kidwai M.
Mothsra P.
Bansal V.
Somvanshi RK.
Ethayathulla AS.
Dey S.
Singh TP.
J. Mol. Catal. A: Chem.
2006,
265:
177
<A NAME="RG08107ST-20D">20d </A>
Kidwai M.
Mothsra P.
Tetrahedron Lett.
2006,
47:
5029
<A NAME="RG08107ST-20E">20e </A>
Kidwai M.
Mothsra P.
Bansal V.
Goyal R.
Monatsh. Chem.
2006,
137:
1189
<A NAME="RG08107ST-21A">21a </A>
Kidwai M.
Bansal V.
Saxena A.
Shankar R.
Mozumdar S.
Tetrahedron Lett.
2006,
47:
4161
<A NAME="RG08107ST-21B">21b </A>
Saxena A.
Kumar A.
Mozumdar S.
Appl. Catal. A: Gen.
2007,
317:
210
<A NAME="RG08107ST-22">22 </A>
Preparation of Cu Nanoparticles: A chemical method involving the reduction of Cu2+ ions to Cu(0) in a reverse micellar system was employed to prepare the Cu nanoparticles.
Poly(oxyethylene)(tetramethyl)phenyl ether, commercially known as Triton X-100 (TX-100)
was used as surfactant in the process. To a reverse micellar solution of CuSO4 (aq) , another reverse micellar solution of N2 H2 (aq) was added with constant stirring. In the presence of N2 atmosphere the resulting solution was further stirred for 3 h to allow the complete
Oswald ripening (particle growth). The Cu nanoparticles were extracted using anhyd
EtOH followed by centrifugation. By varying the H2 O content parameter Wo (defined as the molar ratio of water to surfactant concentration, Wo = [H2 O]/[surfactant]) the size of nanoparticles could be controlled. The nanoparticles
prepared were spherical in shape, with an average size of 18 ± 2 nm as confirmed by
TEM photograph and QELS data. The metallic nature of the Cu(0) nanoparticles was confirmed
by a characteristic UV absorption of the particles dispersed in cyclohexane (580 nm).
Typical Procedure
A 50-mL round-bottomed flask was charged with aromatic or heterocylic aldehydes 1a -h (1 mmol), secondary amine (1 mmol) and phenylacetylene (1.5 mmol) in MeCN (5 mL)
and the contents of the flask were stirred under a nitrogen atmosphere followed by
the addition of Cu nanoparticles (15 mol%, 18 ± 2 nm). The resulting solution was
refluxed at 100-110 °C for the appropriate time mentioned in Table
[4 ]
. The extent of reaction was monitored by TLC. After completion of the reaction, the
reaction mixture was centrifuged at 2000-3000 rpm, at 10 °C for 5 min. The organic
layer was decanted and the remaining Cu nanoparticles were reused for further reactions.
The organic layer was dried over anhyd Na2 SO4 and the solvent was removed in vacuo. The crude product was subjected to purification
by silica gel column chromatography using a mixture of 15% EtOAc, 5% MeOH and 80%
PE as eluent to yield the propargylamine 3a -h . The structures of all the products were unambiguously established on the basis of
their spectral analysis (IR, 1 H NMR, 13 C NMR and GC-MS data). All the products are known compounds.
<A NAME="RG08107ST-23">23 </A>
Mallick M.
Witcomp M.
Scurrell M.
Mater. Chem. Phys.
2006,
97:
283