Abstract
Recyclable metal nanoparticles provide an efficient, economic, and novel route for the synthesis of propargylamines via three-component A3 coupling reaction of aromatic aldehyde, amine and alkyne. This method provides a wide range of substrate applicability. This protocol avoids the use of heavy metal, co-catalyst and gives propargylamines in quantitative yield.
Key words
metal nanoparticles - propargylamines - heterogeneous catalysis - cyclic secondary amines - one-pot multicomponent reaction
References and Notes
1a
Li CJ.
Acc. Chem. Res.
2002,
35:
533
1b
Sonogashira K. In
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E.
John Wiley and Sons;
New York:
2002.
p.493
1c
Dyker G.
Angew. Chem. Int. Ed.
1999,
38:
1698
2a
Yan W.
Wang R.
Xu Z.
Xu J.
Lin L.
Shen Z.
Zhou Y.
J. Mol. Catal. A: Chem.
2006,
25:
81
2b
Kidwai M.
Bansal V.
Saxena A.
Aerry S.
Mozumdar S.
Tetrahedron Lett.
2006,
47:
8049
2c
Wang Z.
Xiao P.
Shen B.
He N.
Coll. Surf. A
2006,
276:
116
3
Catalysis: An Integrated Approach , In Studies in Surface Science and Catalysis, Vol. 123
2nd ed.:
Vansanten RA.
VanLeeuwen PWNM.
Moulijn JA.
Averill BA.
Elsevier;
Amsterdam:
1999.
4
Klabunde JK.
Nanoscale Materials in Chemistry
John Wiley and Sons;
New York:
2001.
p.226
5a
Boulton AA.
Davis BA.
Durden DA.
Dyck LE.
Juorio AV.
Li XM.
Paterson IA.
Yu PH.
Drug Dev. Res.
1997,
42:
150
5b
Huffman MA.
Yasuda N.
DeCamp AE.
Grabowski EJJ.
J. Org. Chem.
1995,
60:
1590
5c
Konishi M.
Ohkuma H.
Tsuno T.
Oki T.
VanDuyne GD.
Clardy J.
J. Am. Chem. Soc.
1990,
112:
3715
6a
Miura M.
Enna M.
Okuro K.
Nomura M.
J. Org. Chem.
1995,
60:
4999
6b
Jenmalm A.
Berts W.
Li YL.
Luthman K.
Csoregh I.
Hacksell U.
J. Org. Chem.
1994,
59:
1139
6c
Nilsson B.
Vargas HM.
Ringdahl B.
Hacksell U.
J. Med. Chem. Soc.
1992,
35:
285
7a
Dyker G.
Angew. Chem.
1999,
38:
1698
7b
Naota I.
Takaya H.
Murahashi SI.
Chem. Rev.
1998,
98:
2599
8a
Yan W.
Wang R.
Xu Z.
Xu J.
Lin L.
Shen Z.
Zhou Y.
J. Mol. Catal. A: Chem.
2006,
255:
81
8b
Zhang Y.
Santos AM.
Herdtweck E.
Mink J.
Kuhn FE.
New J. Chem.
2005,
29:
366
8c
Wei C.
Li Z.
Li CJ.
Org. Lett.
2003,
5:
4473
9a
Kantam ML.
Prakash BV.
Reddy C.
Reddy V.
Sreedhar B.
Synlett
2005,
2329
9b
Wei C.
Li CJ.
J. Am. Chem. Soc.
2003,
125:
9584
10
Lo VKY.
Liu Y.
Wong MK.
Che CM.
Org. Lett.
2006,
8:
1529
11a
Shi L.
Tu YQ.
Wang M.
Zhang FM.
Fan CA.
Org. Lett.
2004,
6:
1001
11b
Syeda HZS.
Halder R.
Karla SS.
Das J.
Iqbal J.
Tetrahedron Lett.
2002,
43:
6485
11c
Kabalka GW.
Wang L.
Pagni RM.
Synlett
2001,
676
11d
Ju Y.
Li CJ.
Varma RS.
QSAR Comb. Sci.
2004,
23
11e
Orlandi S.
Colombo F.
Benaglia M.
Synthesis
2005,
1689
11f
Gommermann N.
Knochel P.
Chem. Eur. J.
2006,
12:
4380
11g
Bieber LW.
da Silva MF.
Tetrahedron Lett.
2004,
45:
8281
12
Fischer C.
Carreira EM.
Org. Lett.
2001,
3:
4319
13
Hua LP.
Lei W.
Chin. J. Chem.
2005,
23:
1076
14
Li CJ.
Wei C.
Chem. Commun.
2002,
268
15
Zhang L.
Wei C.
Varma RS.
Li CJ.
Tetrahedron Lett.
2004,
45:
2443
16
Choudary BM.
Sridhar C.
Kantam ML.
Sridhar B.
Tetrahedron Lett.
2004,
45:
7319
17
Leadbeater NE.
Torenius HM.
Tye H.
Mol. Diversity
2003,
7:
135
18
Sreedhar B.
Reddy PS.
Prakash BV.
Ravindra A.
Tetrahedron Lett.
2005,
46:
7019
19
Park SB.
Alper H.
Chem. Commun.
2005,
1315
20a
Kidwai M.
Venkataramanan R.
Dave B.
Green Chem.
2001,
3:
278
20b
Kidwai M.
Bansal V.
Mothsra P.
J. Mol. Catal. A: Chem.
2007,
268:
76
20c
Kidwai M.
Mothsra P.
Bansal V.
Somvanshi RK.
Ethayathulla AS.
Dey S.
Singh TP.
J. Mol. Catal. A: Chem.
2006,
265:
177
20d
Kidwai M.
Mothsra P.
Tetrahedron Lett.
2006,
47:
5029
20e
Kidwai M.
Mothsra P.
Bansal V.
Goyal R.
Monatsh. Chem.
2006,
137:
1189
21a
Kidwai M.
Bansal V.
Saxena A.
Shankar R.
Mozumdar S.
Tetrahedron Lett.
2006,
47:
4161
21b
Saxena A.
Kumar A.
Mozumdar S.
Appl. Catal. A: Gen.
2007,
317:
210
22
Preparation of Cu Nanoparticles: A chemical method involving the reduction of Cu2+ ions to Cu(0) in a reverse micellar system was employed to prepare the Cu nanoparticles. Poly(oxyethylene)(tetramethyl)phenyl ether, commercially known as Triton X-100 (TX-100) was used as surfactant in the process. To a reverse micellar solution of CuSO4 (aq) , another reverse micellar solution of N2 H2 (aq) was added with constant stirring. In the presence of N2 atmosphere the resulting solution was further stirred for 3 h to allow the complete Oswald ripening (particle growth). The Cu nanoparticles were extracted using anhyd EtOH followed by centrifugation. By varying the H2 O content parameter Wo (defined as the molar ratio of water to surfactant concentration, Wo = [H2 O]/[surfactant]) the size of nanoparticles could be controlled. The nanoparticles prepared were spherical in shape, with an average size of 18 ± 2 nm as confirmed by TEM photograph and QELS data. The metallic nature of the Cu(0) nanoparticles was confirmed by a characteristic UV absorption of the particles dispersed in cyclohexane (580 nm).
Typical Procedure
A 50-mL round-bottomed flask was charged with aromatic or heterocylic aldehydes 1a -h (1 mmol), secondary amine (1 mmol) and phenylacetylene (1.5 mmol) in MeCN (5 mL) and the contents of the flask were stirred under a nitrogen atmosphere followed by the addition of Cu nanoparticles (15 mol%, 18 ± 2 nm). The resulting solution was refluxed at 100-110 °C for the appropriate time mentioned in Table
[4 ]
. The extent of reaction was monitored by TLC. After completion of the reaction, the reaction mixture was centrifuged at 2000-3000 rpm, at 10 °C for 5 min. The organic layer was decanted and the remaining Cu nanoparticles were reused for further reactions. The organic layer was dried over anhyd Na2 SO4 and the solvent was removed in vacuo. The crude product was subjected to purification by silica gel column chromatography using a mixture of 15% EtOAc, 5% MeOH and 80% PE as eluent to yield the propargylamine 3a -h . The structures of all the products were unambiguously established on the basis of their spectral analysis (IR, 1 H NMR, 13 C NMR and GC-MS data). All the products are known compounds.
23
Mallick M.
Witcomp M.
Scurrell M.
Mater. Chem. Phys.
2006,
97:
283